
RD-A145 558 PARAMETRIC ANALYSIS FOR GENERALIZED NETWORK FLOW i
PROBLEMS(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB
OH Mi E BAUM MRI' 84 RFIT/CI/NR-84-38D

UNCLASSIFIED F/ 12/1 NL

mmmmmhus

111.0 1 2.5IIIEQ8
L

1111 1. L32
11111.2 li&' 142

1.4p

SECURITY CLASSIFICATION OP TH.IS PAGE (Whom. Daret d

REPORT DOCUMENTATION PAGE BEOECMLEIGFR
IREPORT NUMear 1. GOVT ACCESSION NO, 3. 4CIPIEMT-S CATALOG NUMBER

-- AFIT/CI/NR 84-38D -

14L TITLIE (and Subtifi) S. TYPE Of REPORT 4 PERIOD COVERED

Parametric Analysis for Generalized Network Flow TW%5YS/DISSERTATION
Problems_______________

4. PERFORMING OR1G. REPORT NUMBSER

7n . AUTNOft(q) 6. CONTRACT ON GRANT NUMBIER(s)

Michael Ernest Baum

9 . PERFORMING ORGANIZATION MAKE AND AOOPESS 10. PROGRAM ELEMENT. PROJECT. TASK--
AA 6 WORK UN IT NUMBERS1 E

AFIT STUDENT AT: The University of Texas
at Austin4 1. CONTROLLING OFFICE NAMIE AND AOORESS 12. REPORT OATS

AFIT/NR May 1984
WPAFB OH 45433 is. W1 BER OPP PAGES

141 MONITORIN .G AGENCY NAME 6, ADORESS(If differenta from CO.,tlling allies) IS. SECURITY CLASS, (of this report)

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED D T IC
ELECTE

&SEP 17 198

17. DISTRIBUTION STATEME14T (of the .bettact entered in Stock 20, it different from ReArt)

De nt r Research and
Professional Developwren

19. KEY wORDS (Continue on reverse side if necessatry a Identify by blockjI WrihtPates A O

20 A*DSTRPACT (Continue an reverse aide It necoeatry and Identify by block number)

ATTACHED

DD I AN7 1473 A EDotuN o, ,ov 6~ iSoSSOLETE UNCLASS

SECURITY CLASSIFICATI-04 OF THIS ObAGE (WIen Date Enferod)84 09 13 002

PARAMETRIC ANALYSIS FOR GENERALIZED

NETWORK FLOW PROBLEMS

Publication No. ___

Michael Ernest Baum, Ph.D.
The University of Texas at Austin, 1984

Supervising Professor: Paul A. Jensen

A generalized network flow problem can be efficiently solved

with state of the art computer codes. However, because of the

uncertainty or inaccuracy of initial problem input data, the

solution found may need reexamination.

Parametric analysis allows the management scientist to vary

any of the right-hand side restrictions, either external flow or

capacities, and determine the series of bases so the solution

remains optimal. This study uses the special structural properties

of the generalized network flow problem to iteratively change the

network flows, until no further changes in the basis can be made.

Additionally, two dual-incremental flow algorithms based on

parametric analysis are developed. A series of test problems were

randomly generated and computational results were compared to two

primal generalized network comnputer codes and a published dual

incremental computer code.

AFIT/CI/NR 84-38D

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to ascertain the value aind/or contribution of research
accomplished by students or faculty of the Air Force Institute of Technology (AU). It would be
greatly appreciated if you would complete the following questionnaire and return it to:

AF IT/NR
Wright-Patterson AFB OH 45433

RESEARCH TITLE: Parametric Analysis for Generalized Network Flow Probilems

AUTHOR: Michael Ernest Baum

RESEARCH ASSESSMENT QUESTIONS:
1. Did this research contribute to a current Air Force project?

()a. YES ()b. NO
2. Do you believe this research topic is significant enough that it would have been researched

(or contracted) by your organization or another agency if AFIT had not?-

C)a. YES ()b. NO
3. The benefits-of AFIT research can often be expressed by the equivalent value that your

agency achieved/received by virtue of AFIT performing the research. Can you estimate what this
research would have cost if it had been accomplished under contract or if it had been done in-house
in terms of manpower and/or dollars?

() a. MAN-YEARS ______()b. $_____
4. Often it is not possible to attach equivalent dollar values to research, although the

results of the research may, in fact, be important. Whether or not you were able to establish an
equivalent value for this research (3. above), what is your estimate of its significance?

)a. HIGHLY ()b. SIGNIFICANT ()c. SLIGHTLY ()d. OF NO
SIGNIFICANT .SIGNIFICANT SIGNIFICANCE

5. AFIT welcomes any further coumments you may have on the above questions, or any additional
details concerning the current application, future potential, or other value of this research.
Please use the bottom part of this questionnaire for your statement(s).

NAE.GRADE POSITION

ORGANIZATION LOCATION

STATEJ4ENT(s):

PARAMETRIC ANALYSIS FOR GENERALIZED

NETWORK FLOW PROBLEMS

APPROVED BY SUPERVISORY COMMITTEE:

A. . ..4-...

A-iCceson For
NTIS GRA&I

DTIC T.B

Unann&.inced 5li| ~~Juzt i " !cat tr,

.By. _ __ __ _

D13tribtlon/."
Avail- blltt iCodes

Avll tnd/or

Dist Special

r' 'I

, Copy 0

84 09 13 002

To my Mother who I wish could

have seen this work completed.

To my Father on his 75th birthday.

To my family and extended family for
all their encouragement and understanding.

To my wife, whose steadfast support kept

me going when there seemed to be no light
at the end of the tunnel.

PARAMETRIC ANALYIS FOR GENERALIZED

NETWORK FLOW PROBLEMS

by

Michael Ernest Baum, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

MAY 1984

ACKNOWLEDGEMENTS

The author would like to express his sincere gratitude to

Dr. Paul A. Jensen, Chairperson of his Doctoral Committee, for his

invaluable guidance, advice, assistance, support, and patience

during the past year and one-half. The author would also like to

acknowledge the other members of his Doctoral Committee, Dr. J.

Wesley Barnes, Dr. Jay Brennan, Dr. Leon S. Lasdon, and Dr. William

G. Lesso for their constructive comments, suggestions, and words of

encouragement.

Finally, a special thanks is due to my wife Sigrid. Her

constant encouragement and patience were an immeasurable

contribution to the success of this work.

iv

PARAMETRIC ANALYSIS FOR GENERALIZED

NEWORK FLOW PROBLEMS

Publication No. ___

Michael Ernest Baum, Ph.D.
I The University of Texas at Austin, 1984

Supervising Professor: Paul A. Jensen

A generalized network flow problem can be efficiently solved

with state of the art computer codes. However, because of the

uncertainty or inaccuracy of initial problem input data, the

solution found may need reexamination.

Parametric analysis allows the management scientist to vary

any of the right-hand side restrictions, either external flow or

capacities, and determine the series of bases so the solution

remains optimal. This study uses the special structural properties

of the generalized network flow problem to iteratively change the

network flows, until no further changes in the basis can be made.

Additionally, two dual-incremental flow algorithms based on

parametric analysis are developed. A series of test problems were

randomly generated and computational results were compared to two

primal generalized network computer codes and a published dual

Incremental computer code.

v

TABLE OF CONTENTS

CHAPTER PAGE

1. Introduction

1.1 The Generalized Minimum Cost Network Flow
Problem I

1.2 Parametric Programming 4
1.3 Study Outline 6

2. Literature Review

2.1 Introduction 8
2.2 Linear Progamming Background 8
2.3 Generalized Networks 11
2.4 Sensitivity Analyis and Parametric

Programming 13

3. Background in Linear Programming

3.1 Introduction 15
3.2 Statement of the Problem 15
3.3 The Transformed Problem 19
3.4 Conditions for Optimality 21
3.5 Pivoting 23
3.6 Steps of the Simplex Algorithm 29
3.7 The Dual-Simplex Method 31
3.8 Perturbation of the Right-Hand side

Vector C 34
3.9 Perturbation of the Right-Hand side

Vector b 41

4. Background in Network Flow Programming

4.1 Introduction 43
4.2 Network Structure 45
4.3 A Useful Simplification 50
4.4 The Expanded Network 51
4.5 The Marginal Network 52
4.6 Basis and Basic Solutions 53

vi

4.7 Pointer Representation of the Basis 58
4.8 Linear Programming Results for Network

Models 58
4.9 Solution Algorithm for Network Flow

Problems 64
4.10 Network Manipulation Subroutines 68

5. Parametric Analysis of a Generalized Network

5.1 Introduction 71
5.2 Parametric Analysis for Arc Capacities 71
5.3 Initial Optimal Solution 72
5.4 Candidate Arc and Parametric Parameter Lists 73
5.5 Computing the Effects of Parametric Changes

on Basic Flows 73
5.5.1 Flow Change at a Node 75
5.5.2 Capacity Change on a Single Nonbasic Arc 79
5.5.3 Capacity Change on a Set of Nonbasic Arcs 85
5.5.4 Capacity Change on a Set of Candidate Arcs 87
5.5.5 Computer Implementation of Flow Augmenting

Trails 88
5.6 Computing Maximum Parametric Variation of Are

Capacities and Finding the Arc to Leave the Basis 97
5.7 Determining the Entering Arc 108

5.7.1 Characteristics of the Entering Arc 108
5.7.2 On Determining the New Values of Y 113
5.7.3 Selecting the Entering Arc 116

5.8 A Basis Change Method 132
5.9 The Complete Algorithm 134
5.10 Extensions to Node External Flows 147

6. Applications of Parametric Sensitivity Analysis

6.1 Introduction 1
6.2 The Parametric Arc Incremental Flow Algorithm 151

6.2.1 Obtaining the Initial Basis Tree 154
6.2.2 Determining the Arc to Leave the Basis 159
6.2.3 Determining the Arc to Enter the Basis 159
6.2.4 Changing the Basis 159
6.2.5 The Complete Algorithm 160

6.3 The Parametric Node Incremental Flow Algorithm 169
6.3.1 Obtaining the Initial Basis Tree 172
6.3.2 Determining the Arc to Leave the Basis 174
6.3.3 Determining the Arc to Enter the Basis 175

vii

: -. -- --- - - V _ _ _ . - -- _ - _ _ _ _ _ _ _ . . r

6.3.4 Changing the Basis 175
6.3.5 The Complete Algorithm 175

6.4 Computational Analysis of PARARC and PARANDE 178
6.5 Other Applications of Parametric Sensitivity

Analysis 188

7. Conclusions

7.1 Summary 192
7.2 Contributions 193
7.3 Recommendations for Future Research 194

Appendix 1 198

Appendix 2 207

Bibliography 213

viii

LIST OF FIGURES

FIGURE PAGE

4.1 Example Generalized Network with Optimal Solution 44

4.2 Example of Basis Networks 57
4.3 Basis Cycle 59
4.4 Basis with Several Components 59
4.5 Basis Network with a Cycle 60
5.1 Generalized Network Flow Problem with Optimal Solution 74
5.2 Optimal Generalized Network Basis 77
5.3 Flow Augmenting Trails 80
5.4 Subroutine PATH 91
5.5 Subroutine TRAIL2 92
5.6 Subroutine CYCLEG 93
5.7 Subroutine MFLOG2 105
5.8 Determining the Entering Arc 112
5.9 Case 1: Determining the Marginal Arc Cost 118
5.10 Case 2: Determining the Marginal Arc Cost 118
5.11 Case 3: Determining the Marginal Arc Cost 120

5.12 Case 4: Determining the Marginal Arc Cost 120
5.13 Case 5: The Entering Arc Forms.a Cycle 122
5.14 Subroutine FIND2G 125
5.15 Subroutine ABSORB 128
5.16 Subroutine GENER2 130
5.17 Subroutine PIVOTIG 133
5.18 Main Program PSENG 136
5.19 Subroutine UPDATE 139
5.20 Subroutine COMPLETE 140
5.21 Example of PSENG 142
5.22 Optimal Objective Function Value as a Function of the

Cumulative Reference Number 149

6.1 Sample PARARC Problem 155
6.2 The Augmented Network 155
6.3 The Initial Basis 158
6.4 Example Application of PARARC Algorithm 163
6.5 Sample PARANDE Problem 173
6.6 The Augmented Network 173
6.7 Example Application of PARANDE Algorithm 179

ix

LIST OF TABLES

TABLE PAGE

5.1 Determining the Entering Arc 114

5.2 Summary Table for PSENG Example Problem 148

6.1 Computational Testing Problem Data 184

6.2 Solution Times for the TransportaCion Problems 186

6.3 Solution Times for the Transshipment Problems 187

x

CHAPTER 1

INTRODUCTION

1.1 The Generalized Minimum Cost Network Flow Problem,

In recent years there has been an increasing awareness that

network flow Programming is a powerful modeling and problem solving

technique that can be applied to a wide range of physical and

conceptual situations. The network flow programming model -

encompasses a variety of problem classes, including the shortest

path problem, the maximum flow problem, the pure minimal cost flow

problem, the convex network flow problem, and the generalized

minimum cost flow problem. Among these classes, the generalized

network is the problem that is considered in this research. The

generalized transportation problem and generalized assignment

problem are special cases of a generalized minimum cost flow

problem.

The network of a generalized minimum cost flow problem is a

directed graph defined by a set of arcs, M, with ordered pairs of

nodes (i,j) as elements indexed by k. For each arc in the

generalized minimum cost flow problem there is: a cost hkfor each

unit of flow which passes through the arc; a lower bound ck9 which

is the minimal allowable flow that an arc can carry ;a capacity c.k,

2

which is the maximum amount of flow that an arc can carry ;and a

gain factor a.k which determines if flow is to be lost, generated, or

conserved on the arc. Each node in the minimum cost flow problem is

either a supply node where flow enters the network, a demand node

where flow leaves the network, or a transshipment node where no flow

enters or leaves the network. The required quantities of flow

entering or leaving the network at the nodes are called external

flows. A positive external flow enters the network at a node, and

a negative external flow leaves the network at that node. --

The goal of a generalized minimum cost flow pfoblem is to

determine how a commodity should be delivered through the arcs of a

network, that is to choose the arc flows f k9 so that shipment cost-

will be minimized and two kinds of constraints are satisfied. The

two constraints to be satisfied are 1) that flow be conserved at

each node, which is to say that flow leaving a node from the arcs of

a network minus flow entering the node on the arcs of-the network

must equal the external flow at the node; and 2) that the flow on

each arc be between its lower bound and capacity. The algebraic

representation of the model can be expressed as a bounded linear

programming problem with a constraint for each node and a variable

f or each arc.

The algebraic model is stated as follows:

3

m
Mimn 1 hkfk

k=12

S.T. E fk - Z akfC - bi i-l,...,n-1

koi. kIMTi

k S fk ckM

or in matrix form

Min HF

S.T. AF b

C < F < C .

where

f is the amount of flow on arc k

hk is the shipping cost for each unit of flow on

arc k

is the minimum amount of flow on arc k

ck is the maximum amount of flow on arc k

ak is the gain parameter on arc k

b is the external flow at node i (positive for

incoming flows, negative for outgoing

flows)

4

M 0i is the set-of arcs which originate at node £

M is the set of arcs which terminate at node i
Ti

F,H,C,C, and b are respectively the collections

of fk ~~ ~ and bk A is the node

arc incidence matrix of the generalized

minimum cost flow model. An example of the

A matrix will be shown in Chapter 4.

1.2 Parametric Programming

An important part in the analysis of any large mathematical

programming problem is the study of how the solution changes with

variations of the problem data. There may be questions concerning

the accuracy of the data or a simple desire to see how the solution

changes as elements of the solution change. This problem gives rise

to the area of sensitivity analysis. When performing sensitivity

analysis, one determines the region over which the restrictions may

by changed so as to maintain an optimal solution. This analysis may

be extended to parametric programming, where a series of optimal

solutions are generated as the conditions are continuously changed.

This allows the analyst to be able to answer a series of "what if"

questions about the problem. The flexibility created by allowing

changes in any part of the problem data leads to a much more

powerful analytic technique.

In particular the analyst may wish to vary some of the

right-hand side restrictions. These might include variations of the

external flows (b) or the capacity restrictions (C). We can state

the parametric programming problem for varing the external flows as

follows:

Min HF

S.T. AF-b +E) b

C < F < C

o < emax

where eis the change to be accomplished In the external flow vector

b. Similarly we can state the parametric programming problem for

the variation of the capacity vector as

Min HF

S.T. Ai-b
A

C < F < C +X C

- max

where A~ is the change to be accomplished in the capacity vector C.

We can also give a concise verbal description of the parametric

programing problem as follows:

6

Given: An optimal solution to a generalized
minimum cost network flow problem and a set
of parameters of the problem which are to
be varied.

Problem: Determine a series of optimal
solutions to the original problem as the
parameters are continuously varied.

By Choice of: How much flow to send along each
arc of the network.

Subject to: External flow restrictions must be
met; conservation of flow at each node must
be maintained; lower and upper bounds on
each are must not be violated.

The significance of this solution technique is that it will

allow the analyst to examine a range of optimal solutions for the

problem being modeled. Secondly it opens the avenues to the

solution of problems which have imbedded networks as subproblems in

which either capacities or external flows are being varied. The

solution algorithm could take the previous iterations' optimal

solution and iterate by use of the parametric sensitivity algorithm

which will be presented.

1.3 Study Outline

In this research, an attempt is made to develop a parametric

programming algorithm which applies to the generalized network flow

problem. A detailed review of past literature relative to the

7

history of linear programming, generalized network programming, and

the solution technique is presented in Chapter 2. In Chapter 3 a

summary of linear programming theory relevant to this problem is

discussed. Chapter 4 is a review of pertinent network flow

terminology and theory. Chapter 5 presents a detailed description

and explanation of the solution technique as it is applied to the

generalized network flow problem. Finally, in Chapter 6, two new

dual-incremental flow algorithms are developed. Computational

results comparing these codes to two primal codes and a published - -

dual-incremental code are presented.

-CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The generalized minimum cost network flow problem is an

important class of network flow problems in which efficient solution

algorithms exist. The generalized network flow problem is a special

case of a bounded variable linear program. Since linear programming

has played such an important role in the development of network flow

programming, we first review the history of linear programming

V bef ore further discussion of generalized network flow literature.

2.2 Linear Programming Background

Some of the original works of linear programming theory can

be traced back to 1823 when Fourier experimented with homogeneous

linear systems. These methods were similar to the later discovered

simplex algorithm (28). During this same period the works of Gauss

and Jordan also established some basic techniques for solving linear

systems of equations. P. Conian appears to be the first to recognize

that a linear system of homogeneous equations has an associated dual

homogeneous problem and that non-negative variables in these systems

8

9

of equations possesses a solution with at least one variable

positive if the dual possesses no solution with strict inequalities.

Steimke expanded this result to include all positive variables (21).

Applying Fourier's principles, Minkowski concluded that in a

homogeneous system, the general system can be formed as a

non-negative linear combination of finite extreme point solutions.

Ville,*Von Neuman, and Morgenstein presented relationships between

primal and dual solutions in the late 1930's and early 1940's, but

it was Kantorovich, in 1939, who came extremely close to developing
IL

the first linear programming algorithm. He outlined solution methods

to a class of problems consisting of simultaneous outputs (49). His

initial approach was based on an initial feasible dual solution.

The most influential work appeared to be that of Neyman and

Pearson (63), in 1936, whose development of some duality and linear

inequality theories led to the significant discovery of Dantzig

(21). The first primal algorithmic procedure for linear programming

problems was the simplex method developed by Dantzig in 1947.

Shortly, thereafter, Von Neuman expressed the additional importance

of duality in solving linear systems (78). In 1951 Tucker, Kuhn,

and Gale developed a duality theorem. Also in 1951, Dantzig and

Orden proved that the optimal solution for the primal provided a

corresponding optimal for the dual. Lemke, 1954, discovered the dual

simplex algorithm. He also added an important note on the

10

complementary slackness conditions between the primal and dual

solutions (56). Charnes, et al. (18,19) pioneered the application

of linear programming techniques to the industrial world, besides

publishing numerous articles which contributed to linear programming

theory. Continued search for new algorithmic approaches resulted in

Orchard-Hay's composite simplex which is used in those cases where a

solutibn was found to be neither primal or dual feasible (64).

These results formed the basis of linear programming.

During the 1950-1970's with the rise of improved computer

technology, much of the research done was to improve the

computational efficiency of the simplex on large scale programming

applications. The introduction of the revised-simplex technique. of

Dantzig, Orchard-Hays and others led to more efficient numerical

methods. Dantzig and Van Slyke (22) improved the computational

efficiency of a special class of linear programs with generalized

upper bounds (GUB) constraints. Hellerman and Rarick (41) and

Forrest and Tomlin (27) worked on numerical stabilty for reinverting

the basis. Schrage (68,69) and Todd (75) developed special

algorithms for applications of the simplex method to linear

programs with variable upper bounds (VUB).

The refinement of data storage and retrieval, as well as

more efficient computational methods, have been a springboard in

recent years for the methods mentioned above to be applied to a wide

IL

field of complex large scale linear programs.

2.3 Generalized Networks

The first computational procedures for the generalized

network problem related to the generalized transportation problem.

This application has a bipartite structure and uncapacitated arcs.

Dantzig (21) and Charnes and Cooper (17) described early attempts at

adapting the simplex method to this special problem. Eisemann (24),

Lourie (57), and Balas and Ivanescu (11) implemented the use of

primal procedures in relation to the stepping stone method of the

pure transportation problem. Eisemann (24) additionally discussed ..-

the use of a dual solution approach to the problem. All these

methods use the matrix representation of the transportation problem

and are based on the bipartite nature of the graph.

Jewell (47) introduced a procedure similar in concept to the

out of kilter algorithm (26) to solve the generalized minimum cost

flow problem on a general network with capacities. Minieka (61)

modified Jewell's algorithm to guarantee finite termination.

Johnson (48) suggested the use of the three pointer

representation of the basis in the generalized network problem.

Maurras (59) and Glover, Klingman, and Stutz (37) utilized a three

pointer representation to implement primal algorithms for the

12

generalized minimum cost flow problem. Additional computational

simplifications were made to the generalized transportation problem

by Glover and Klingman (36). Jensen and Bhaumik (44) described a

dual incremental approach.

Hultz and Klingman (43) provided an improved dual feasible

start and made computational comparisons on pure network test

problems. Glover, et al., (38) presented an application paper on the

use of generalized networks and computational testing with their

generalized network code NETG. Elam, Glover, and Klingman (29)

presented a primal simplex algorithm which is specially designed to

reduce the number of degenerate pivots. Jensen and Barnes (46)

developed a generalized primal code, called PGAINS, and a dual

incremental code call INCREMG. Adolphson (2) extented the preorder

thread to generalized models in his computer code AGENNET. Gibby,

et al., (32) explored different pivoting strategies to improve the

efficiency of primal codes.

The interest in the area of applications of generalized

networks continues to expand, as does the size of the problems which

are being solved by these solution methods. We have merely surveyed

the major accomplishments in the area of generalized networks.

13

2.4 Sensitivity Analysis and Parametric Programming

During the history of linear programming many economists and -

specialists have met with failure when they have attempted to

introduce linear programming into their operations. This has been

based frequently on one of the following factors:

1. The uncertainty and inaccuracy of the initial data.
2. The problems of evaluation and interpretation as well as

application and exploitation of the results in practice.

The problems mentioned in 1. gave rise to the area of sensitivity

analysis in which one may test in what regions the right-hand side

restrictions may be changed to maintain the optimality of the

solution. The earliest use of parametric programming as applied to

linear programs dates back to Gass and Saaty (30,31). Parametric

programming enables us to compute all existing optimal basic

solutions in relation to their dependence on the values of the

components of the right-hand side. Gal (29) lists over 500

references in his bibliography in relation to either parametric or

sensitivity analysis of linear programs.

The same problem of uncertainty and inaccuracy of the

initial data should lead to similar problems in network solution

analysis by today's managers. However these problems have not led

to a great deal of research interest in this area. Thus, while there

14

exist a large number of references in the linear programming area,

there are relatively few references in the area of parametric

analysis for network flow problems. It appears that the initial

research in a related are was done by Srinivasan and Thompson

(72,73) when they applied operator theory to parametric programming

for the transportation problem. In a series of articles Balachandran

and Thompson (5,6,7,8) apply operator theory to the generalized

transportation problem. Srinivasan and Thompson (74) develop a

theory of cost operator algorithms for transportion problems. In

these methods parametric programming is use to solve the

transportation problem to optimality. Balachandran (10) developes

an operator theoretic approach for a generalized transportation

problem with stochastic demands. Balachandran, Srinivasan and

Thompson (9) demonstrate the application of their operator theory of

parametric programming for both transportation and generalized

transportation problems. Ahuja (3) developes a ranging analysis for

pure capacitated transshipment problems. Adolphson (1), in a

private communication to the author, describes a procedure for

ranging analysis of the right-hand side, cost, and gains factors for

a generalized network flow problem which has a computation time of

order m (where m is the number of arcs).

.f
L*

CHAPTER 3

BACKGROUND IN LINEAR PROGRAMMING

3.1 Introduction

Since a capacitated generalized network is a special case of

a linear program, it seems appropriate to discuss the fundamental

ideas behind the linear programming simplex method. In this chapter

we will first review the bounded variable simplex method, give a

brief discussion of the dual-simplex method, and lastly develop the

background for perturbation of the right-hand side of the

constraints.

3.2 Statement of the Problem

Using matrix notation, the linear programming problem with

simple upper bounds may be stated in the form:

Min Z H T F(3.1)

S.T. AF b (3.2)

o < F <C. (3.3)

15

16

While the above notation is not standard for linear programming, it

follows the network notation used by Ford and Fulkerson (26). F is

the vector of decision variables. R is the vector of variable

costs. The right-hand side values are represented by the vector b,

and C is the vector of capacities or upper bounds. There are n

variables and m equations.

Equation (3.1) is called the objective function and

equations (3.2) and (3.3) are called constraints. A is an m by n

matrix with n > m. We will assume the equations are linearly

independent, that is, we do not have any equation which is a

multiple of one or more of the other equations. Inequality

constraints may be made into equality constaints as in equation

(3.2) by use of "slack variables" which are added to the left-hand

side and whose values represent the difference between the original

left-hand side and the right-hand side. They are called "logical

variables"; the original variables are called "structural variables"

as they have more physical significance.

The main concept behind upper bounding is that any nonbasic

variable f R may either be at zero of its upper bound CR. This

eliminates the need to represent the upper bound on a variable as a

separate constraint, thus saving a row in the constraint matrix for

each upper bound. This reduces m, the size of the basis matrix,

with the resultant savings in both running time and storage

17

requirements. The price paid for such savings is that the steps of

the simplex algorithm become slightly more complicated.

We can use equation (3.2) to solve for m variables called

the basic variables in terms of the other (n-m) variables called the

nonbasic variables. We partition A into the submatrices B,

Ru

A B P B 1 RUB (3.4)

where B is an m by m nonsingular submatrix formed from the columns

of the basic variables called the basis matrix; and RUB

constitute the columns of the nonbasic variables at zero and the

columns of the nonbasic variables at their upper bounds,

respectively.

We can express equation (3.2) in the form

BF F (3.5)
B RLBFLB + RUBFUB - b

where F has been partioned into

18

FBi

F = FLB (3.6)

corresponding to the partitioning of A.

Equation (3.5) can be rearranged to the form

BFB b ".RLBFLB - R UBFUB (3.7)

and since B is nonsingular

FB B-1b - I RLBFLB B RuBFUB- (3.8)

We have thus solved for m of the variables (FB) in terms of theB

other (n-m) variables (FLB, FUB) , where

FB is called the vector of basic variables

F LB is called the vector of nonbasic variables
at zero

F is called the vector of nonbasic variables
at the upper bound.

A basic solution is defined as one in which the nonbasic variables

are set at either their upper bound, CR, or zero. A basic feasible

solution is one in which all the terms of the vector F B are

nonnegative.

19

3.3 The Transformed Problem

As we partitioned F into (FB, FLB , FUB), we can also

partition H into r(HB, H 'UB)' We can now rewrite equation (3.1)

as

Min Z H B B+ HLB TFLB + HuBTFUB* (3.9)

From equation (3.8) we have an expression for F B in terms of F LB and

F and can write the objective function as
UB

Z H HT (B-1b - B-1R F B-1uF
Z B (B bB RLB LB RUBFUB)

T T+ HLBTFLB + HuB F uB (3.10)

Rearranging terms

Z TB-lb (HBTB-1 H T)F
B H3 B R.LB - LB)LB

(HBTB- RUB - HUB T)FUB. (3.11)

Thus we can express our original problem, equations (3.1 - 3.3), in

the form

20

Min Z H B_ B b -(H TB_ 1 -L HL T)FT
BB LLB

-(H Bl RU H UB)FU (3.12)
B bB U B .

S.T. F B aB1b-B LBF LB - u B FUB (3.13)

F > 0.

This is called the transformed problem, or sometimes referred to as

the current tableau. If we let

8B_ b

and

Tr -1
B

the transformed problem can be expressed as

Min Z H HBT 8-(TRLB -HLB T)F LB

(iRUB -HUB T) E (3.14)

S.T. FB -8a - B_ I BFLB - B_ 1'RB FUB (3.15)

Since F LB ' 0, F B takes on the numerical value of 8-B_ RUB FUB and

the objective function takes on the value of HE8 -~ U - HUB)FU

We leave the right-hand terms of the equations in the transformed

problem even though FL- 0, since they indicate what happens to Z

21

and F as one of the elements of F is increased from zero or one
BnLB

of the elements of F is decreased from its upper bound.
UB

3.4 Conditions for Optimality

The row vectors

T T(n LB - TLB) (3.16)

(RUB - RUB) (3.17)

which premultiply FLB and FUB in equation (3.14), the objective row

'f the transformed problem, are called the vectors of reduced costs,

since they indicate how much the objective Z decreases as FLB

increases from zero or the amount Z increases as FUB decreases from

CUB*

Let us denote the jth element of the reduced cost vectors,

equations (3.16-3.17) by

dJLB - (ZjLB - hJLB) for nonbasic variables at zero

dJUB (z jUB - hjUB) for nonbasic variables at upper

bounds

22

where h is the jth element of H and h is the jth element of
JLB - LB jUB

HUB, and

UT T

ZJLB - aT RLB) i TajLB (3.18)

T TZJUB - (I RUB)j . 7TajUB (3.19)

where ajL B and aJU B are the Jth columns of RLB and RUB' the nonbasic

portion of A.

We see that if for f the corresponding reduced cost is
JLBt

positive, Z will decrease upon increasing f above zero, while if
J LB

for fJUB the corresponding reduced cost is negative, Z will decrease

on decreasing fJUB below cj.

Thus if our transformed problem represents a basic feasible

solution with F B B uB 0, FLB - 0, and FUB = CUB, then

the further condition for optimality is that all elements of the

reduced cost vectors be negative (or zero) for F and positive (or
LB

zero) for F UBO

Summarizing these conditions:

Feasibility 8 - R 0 ..

Optimality dj 0 JC LB

dj >0 JC UB

I

23

where

fj"
LB - {jE: R f is at 0}

UB - {jE RI fj is at cj}

3.5 Pivoting

We consider the possibility of increasing only one nonbasic

variable from zero or decreasing from its upper bound, while all

others stay at zero or their upper bounds. If more than one reduced

cost is positive for a nonbasic variable at zero or negative for a

nonbasic variable at its upper bound, we have an arbitrary choice.

It is customary in most introductory texts to consider the nonbasic

variable with the "largest" reduced cost since this will decrease

the value of the objective function the most per unit change. There

are more elaborate ways to pick the entering variable, but we will

not discuss them here (see reference 62).

Writing out the transformed problem column by column, it

takes the form

Min Z = HBT B - dI(FR) 1 - - dq(FR)q

-d n-m(FR)n- m (3.20)

S.T. F B = I (FR) - q(FR)q

S.I= - .. - .

24

-%n(FR) (3.21)

where

aL - a j - 1,...,n-m. (3.22)

Here we have chosen a nonbasic variable (FR)q to increase from zero

or to decrease from its upper bound. Since some of the nonbasic

variables may be at their upper bound, B does not represent the

current value of FB Rather, we have

F -a j(FR)j (3.23)
B j UB J R

where UB is the set of nonbasic variables at their upper bounds.

To distinquish between current and new values, let (FB)i

denote the current value of the ith basic variable, and F denote
i

its new value as (FR)q changes.

As (FR)q increases (decreases), each element in Fi Will

change:

1. If a is positive, F will decrease
iq

(increase)

2. If aiq is negative, Fi will increase

(decrease).

IV

i!

25

We need to consider three possible events:

a) A basic variable may reach its lower bound
(zero) first

b) A basic variable may reach its upper bound
first

c) A nonbasic variable may reach the other end
of its range before (a) or (b) occur.

Suppose (FR) is increased from zero.

For case (a) we have

(FB)i - aiq(FR)q 0 (3.24)

or

(FR)q < qmin {(FB)i / . (3.25)

For case (b) we have

(FB)i - ciq(FR)q < Ct (3.26)

or

(F) < n m(ci - (FB)i)/ --aiq} . (3.27)
R q i1 <0iiq<0 B,

For case (c) we have

26

(FR)q<Cq* (3.28)

Thus (FR)q must take on the smallest value of (3.25),(3.27), or

(3.28). Equivalently, we can write

CFR)q min f min {(FB)i / ctiq}
i(FRt iq > 0

min {(Ci - (F BY/ -Otiq}, Cq}. (3.29)
il Ot q <0

We must also consider the case where (FR)q is decreased from Cq.

The current values of the basis variables are given by

(FB)i i JUB, J -tiFR)i iqCq" (3.30)

Thus for any new value of (FR)q, we have

Fi . (FB)i + iq(Cq - (FR)q). (3.31)

If we define the decrease in the nonbasic variable by 6 C -k

(FR)q, then for case (a) we have

(FB)i + iq (6) > 0 (3.32)

27

or

6 < min {CFe)i /-i}. (3.33)
ili q<O

For case (b) we have

(FB)i +a iq(6) < C1 (3.34)

or

min {(Ci - (FB)i) / aiq} . (3.35)

ilajq>0

For case (c) we have

< C . (3.36)-- q

Combining the results of equations (3.33), (3.35), and (3.36) we

have

6 in { min {(FB)i / -aiq},

il ,iq O

min {(Ci - (FB)i)/(X iq}, Cq} (3.37)
ikt iq>O

and (F R)q C -6 We should note if (c) occurs no change of the

basis is required. However, we need to record the fact that (FR)q

28

has gone to tie other end of its range. The new basic variables FB

BBwritten in terms of the old basic variables F B are

F B -FB - a q(+Cq)

)+ if (F) increased from zero
and the appropriate sign is: Rif (F:)q decreased from C

if (F R q descreased from C q

If (a) or (b) occurs, for example if i - p, FB is adjusted according

to

(FB)i -iq(FR)q ilp; (FR)q increased from zero

F - (FB)i + a iq(S) iip; (FR)q decreased from Cq

(FR)q i-p.

At this point a non-basic variable has a positive value and a basic

variable has a value of zero or is at its upper bound. Recall that

in the partitioned equation (3.7), (F)p corresponds to the pth

column of B. The pivot operation is completed when the tableau is

rearranged so (FR)q is basic and (FB)p is non-basic. This means

redefining the partition of A so a replaces the pth column of B
q

corresponding to (FR)q entering the basis and (FR) leaving the

basis. Note the fact that a record must be kept of which nonbasic

variables are at their upper bounds.

29

3.6 Steps of the Simplex Method

The procedures outlined in sections 3.2 through 3.5 form the

building blocks of the bounded variable simplex method. While there

exist numerous variants of this method, most computer codes use the

revised simplex method. Thus in all large scale applications all

the elements of -B-1R of the transformed problem are never stored or

computed. We only need two columns of the transformed problem (B -

B-1b and a -B 1a). We assume e have a basic feasible solution

w-1th Te rep s e o n of B a n e r roghohs: ---

B b. The steps of the simplex are as follows:

STEP 1: Produce a pricing vector

H T HBTB-1. (3.38a)

STEP 2: Price out the nonbasic columns

a) Evaluate z :7T Ta (3.38b)
b) Evaluate dJ z I h (3.38c)

j J ,

STEP 3: Select the entering nonbasic variable by choosing

30

a) The most positive dj among the nonbasic

variables at zero

b) The most negative dj among the nonbasic

variables at upper bounds

c) If none exists, stop; otherwise choose q

corresponding to the reduced cost of the7

largest magnitude of a) or b).

STEP 4: Update the entering column by evaluating

a~ -B 1 a (3.38d)
q q

STEP 5: Find the leaving basic variable by selecting

(F R)q -min{ min (FB)i /a iql
14iq>O
min (C - (FB)i)/ -aiql, Cq} (3.38e)

ai iq<O

or

5min{ min (F B)i /Ci

min {(Ci (FB)i)/cL iq1' Cq}* (3.38f)

31

a) If none exists, stop with an unbounded
solution

b) Otherwise let the minimum correspond to i =
p. .

STEP 6: Pivot by adjusting FB SO

(FB)i - aiq(FR)q i~p; (FR)q increased

from zero

F- (FB)i -c t(6) im; (FR) decreased
B B q R q

from C (3.38g)
q

(Fa)q imp

and a replaces the pth column of B.q-

Return to step 1.

3.7 The Dual-Simplex Method

This procedure applies the simplex method to the dual

problem while working with the primal tableau. Suppose we have the

standard primal tableau expressed in the form

Min Z- T - d(Fd (F R)- dq(FR)q-

-d n-m (FR)n-m

32

S.T. FB 8 -1 (FR)I - -0 FR) q

- 'n-m(FR)n-m . (3.39)

For ease of exposition this explanation describes the

dual-simplex method for a linear program without bounds. We assume

the tableau is dual feasible (optimal) but not necessarily primal

feasible. That is, all the reduced costs are less than or equal to

zero (dj < 0), but one or more of the elements of the vector b is

negative. Then the steps of the dual-simplex method are:

STEP 1: Choose the pivot row p by selecting

8- im {8} . (3.40)
ip i <0

a) If none exists, stop with optimal and
feasible solution

b) Otherwise let the minimum correspond to
i-p, say (F)p is the leaving basic
variable.

STEP 2: Choose the entering nonbasic variable.

We must note that the reduced cost of (FB)q in the new

tableau if (FR)j replaces (FR)q in the basis is given by

33

d -d (3.41)

The ratio test now becomes

Qu min {-d~ ((x) (3.42)

for J - q. Noting the fact that if any higher ratio were

used, say for J-r and (F R)r entered the basis, and if (-d r

()p) > (-d /(a) then
rp q q p

d d -(() /c)d <(3.34)
q q qp (ad r<

and optimality would be lost. Thus when (F R q enters the

basis

d d~ i+ (ctj)p j4q. (344

STEP 3: Check for infeasibility

If there is no element (a) < 0 for any of the
ip

nonbasic variables (FRdjf then no nonnegative

value of (F R) can cause (F B) to be feasible;

34

Therefore, stop. The problem is infeasible.

Otherwise go to step 4.

STEP 4: Perform the pivot operation

As in the primal method, exchange (F with

(FB)q in the basis and return to step 1.

There are two major motivations for using the dual-simplex

method.

a) Adding extra rows to the primal problem.
Using the dual-simplex method this is
achieved with essentially the same ease as
adding an extra column to the primal and
pricing out the new column with the current
basis.

b) It is also used in parametric programming
of the right-hand side vector.

3.8 Perturbation of the Right-Hand Side Vector C

During the development of parametric programming, most of

the research effort has been spent on analyzing the problem

35

Min Z HTF (3.45)

S.T. AF b +0b (3.46)

in the range 0 < E) emax(.7

F > 0. (3.48)

However little analysis has been spent on the development of the

parametric analysis for the problem

Min Z H HTF (3.49)

S.T. AF b (3.50)

C < F < C + X C (3.51)

0o<X < X
max

where we parametrically vary the upper bounds of the variable F,

with X, being a scalar.

A capacitated generalized network is a special case of

problem (3.49). Therefore, in order to do parametric analysis on

the capacitated generalized network, we must first analyze

parametric changes in the implicit right-hand side constraints.

Thus suppose the vector C is replaced by C PX C, X > 0.

This means the capacity constraints are changed along the vector C.

Since the right-hand side of the primal problem is the objective of

the dual problem, changing the implicit capacity constraints could

36

be analyzed as changing the objective function of the dual problem.

However, we shall now discuss the effects of changing the capacity

constraints directly in the primal problem.

Recalling from section 3.2, we can partition matrix A into

(B,R). We denote fji corresponding to the ith column of B by FBi

and let R /be the set of indices of the columns of R. Let

a B-1 "

and

= B-b

We can write equation (3.50) in solved form as

F -8 + Z a (-fj) i-1,...,m . (3.52)
Bi ' je RJ

If we define

LB - {j C RIff is at

UB- (j e R Ifl is at cj + c cj }

Z - {jCR fj is at 0)

then we can write (3.52) as

37

- BiB [b E LB J E + a(Xc -cj

+ Z ctif~ (3.53)
*J z

If we let

P B- 1 aU ajC

and let

a 0-B 1 (b- Z a ct

j e LB * - je UB C

then we can rewrite (3.53) as

F CY +P X + a f(.4Bi io io i il..m.(.4

Now we consider varying X to satisfy

Ei io + 0 o <ci +X c i i,.

where L.Bi, UBi are the bounds on the basic variable F~i

From (3.54) we require F Bito satisfy

iBi

38

and
AJ

(aio - Cj) + (io - c) 0 i1l,...,m . (3.56)

In general we consider increasing A from zero to some upper limit

X. We define

Q1 ti Yll SOo _i) >o 0' Po < 01

Q = o - ci) < 0, (Po - c1) > 0) (3.57)

I
As X-is increased, (3.55) ma; be violated if and only if iEQI and

(3.56) may be violated if and only if ie Q2 " Thus let

ie Q
1 ain {(1 o -c1) / -P0 o},

X2 m {-(io - ci) / (Pio - ci)}
is Q2

and

X min (X I,X 2). (3.58)

If the minimum is attained in (3.58) for X k let p - Pk. Thus FBp

will leave the basis at its lower bound (k-I) or its upper bound

(k-2). This leads to two cases.

CASE I: X In this case FBp leaves the basis by going to its

lower bound. If we were to increase X further, it must be true from

p

39

(3.52), we must either

(a) increase a nonbasic variable which has

aij < 0 and j ELB UZ

or

(b) decrease a nonbasic variable which has
Mij > 0 and jeUB U Z.

If such a variable can be found, say FRq , perform a simplex pivot

and make FRq basic while FBp enters the set of nonbasic variables at

their lower bound.

CASE 2: X X 2. In this case F leaves the basis by going to its

upper bound. If we increase further, it also must be true from

(3.52) that we must either

(a) increase a nonbasic variable which has
> 0 and j e LB U Z

or

(b) decrease a nonbasic variable which has

(pj < 0 and jicUBUZ.

Again if such a variable can be found, say Faq , make the appropriate
simplex pivot by letting FRq become basic while FBp enters the set

of nonbasic variables at their upper bound.

40

If no element B r of the appropriate sign can be found in
pq

the "blocking row" p at any step, the algorithm terminates.

An algorithm to accomplish the above procedure would have

the following general steps:

STEP 0: Solve the original problem to optimality.

Set i - I,X i-1 i 0, and X, = 0.

STEP 1: Determine the element B-1 r of the
pq

appropriate sign. If none can be found, stop;

the current basis is optimal for all values of

> x or any further iterations will cause the
i4

problem to become infeasible. Otherwise

calculate X

STEP 2: Let X X- and X. For X e

X] the current basis will remain

optimal. Remove FBp from the basis and pivot

F q into the basis. Update the elements of the

simplex tableau and the objective function.

Return to step 1.

41

3.9 Perturbation of the Right-Hand Side Vector b

If in equation (3.50) we replace b by b +X b, we note the
term H BB-1 R - HR will not be affected, that is dual feasibility will

not be affected. The only change is that B-b will be replaced by
A

B-(b + X b) and accordingly the objective function becomes

H BB- (b +X b).

As long as HBBI(b + Xb) remains nonnegative, the current basis will

remain optimal. We can, therefore, determine the value of X at

which another basis becomes optimal. Let S - {il B- bi < 0}. If S

-D, then the current basis is optimal for all values X > 0.

Otherwise, as before let

X min (B-bi / -B bi}

Let X I X For XE[0, X], the current basis is optimal, where

F B - B-(b +X b).

At XI the right-hand side is replaced by B -(b + X b), FBq is

removed from the basis, and an appropriate variable, according to

tA

42

the dual-simplex criteria, enters the basis. The process is

repeated to find the new range [X '2 over which the new basis

is optimal [X X 2]. We terminate the process when S is empty, in

which case the current basis is optimal for all values of X greater

than or equal to the last value of X, or else when all the entries

in the row whose right-hand side dropped to zero are nonnegative. --

In this case no feasible solutions exist for all values A greater

than the current value.

w "

CHAPTER 4

BACKGROUND IN NETWORK FLOW PROGRAMMING

4.1 Introduction

To better understand the solution method to be developed in

Chapter 5, we shall first discuss some of the concepts for the

solution of a generalized minimum cost flow problem. A detailed

explanation of the concepts discussed below can be found in the text

by Jensen and Barnes (46).

To illustrate a typical generalized minimum cost flow

problem, consider the network model depicted in Figure 4.1. The

algebraic representation of the model is

min H F

S.T. A F b

F < C

F > 0

where

43

44

Flew. Capacitycost. gain)

[Fixed extermal flocw)

2

Example Generalized Network with Optimal Solution
Figure 4.1

I2

H -(2,20,1,12,2)

TJF = (3,1,0,1,0.5)

1 1 0 0 0

A -.33 0 1 1 0

0 -.5 .5 0 1

0 0 0 -.25 -.25

T
BT = (4,0,0,-.375)

CT - (3,4,1.5,1,1.2).

4.2 Network Structure

The structure of a network model is defined by nodes and

arcs. A node i is an element of the set of nodes, N - [1,2,. •

.,n]. An arc may be defined by an ordered pair of nodes

(i,j) or as an element, say k, of the set of arcs M - [1,2,. .,k,.

.,M]. Thus an arc may be identified as an arc k, arc k(i,j), or

(i,j). An arc k(ij) is said to originate at node i and terminate

at node J. Alternatively, i is called the origin node and j is

called the terminal node of arc k. We identify the origin and

terminal lists

46

where andand are the origin and terminal nodes, respectively, of

arc k. The collection of nodes and arcs is a directed network

written D [N,N], where the values n and m and the vectors 0 and T

are sufficient to completely define the network.

A variable quantity that characterizes most of the problems

to be considered is arc flow. Written as fk arc flow usually -

models some physical quantity such as the flow of fluid, flow of

people, or flow of money. Let f kbe the flow in arc k at its origin

kk

generalized network, flow is not conserved in the arc. With a

nonzero gain parameter,

fk ak'k

If a.k - 1 the flow is conserved; if a k < 1, flow is lost; and ifak

> 1 flow Is gained in the arc. The flow vector is defined as

FT -f--

47

where FT indicates the transposed F, that is a column vector.

Associated with each flow in an arc is a cost. The arc cost

is a function of the flow and is written

hk(fk) - hkfk

where hk is an arc parameter giving the arc cost per unit flow. The

cost vector is a row vector, written as

H - [h1 , h2 ,..*,h].

The arc cost is a function of only the flow in the arc and not a

function of flow in the other arcs. The network cost is the sum of

the arc costs. Thus

a
HF= Z hkfk.

k=1

k-

The arc capacity ck is an upper bound for the flow on each

arc. The arc capacity implies the constraint:

f c

k ck

48

The arc capacity vector is a column vector, written as

C = [c, c 2 '* "C].2 "-

In many applications a common requirement is that the arc

flow be at least as great as some lower bound. We therefore provide - -.

the lower bound cI as an input parameter for each arc to constrain

the flow fk such that

fk >-k"

The lower bound vector is also a column vector and is written as

cT = - _t _, . ,]

A gain is the parameter that models a linear increase or

decrease in flow as it passes through an arc. If ak = 1, we have no

change in the flow as it passes through the arc. If ak - 1, for all

k, we have a pure network problem. When 0 < ak < 1, flow is

decreased as it passes through the arc. When ak 1, flow is

increased. It is possible to have negative gains, but the physical

interpretation is not obvious. Zero gains are not allowed.

49

External flows represent connections to the world outside

the system being modeled. There are two kinds of external flows for

a node: the fixed flow and the slack flow. The fixed flow at node

i, bit enters the network if bi > 0 and leaves the network if bI <

0. Any feasible solution stipulates network flows such that all

fixed external flows are satisfied. The slack external flow is a

variable quantity which ranges from zero to some upper bound defined

for the node. The value of the slack external flow is to be

determined by the solution procedure. An external slack input is

represented by an arc to the node from a specialli designated node

called the slack node. An external slack output is represented by an

arc from the node to the slack node. The slack node is different

from all other nodes in that the slack node has the capability to

absorb or generate any required quantity of flow.

A feasible flow F conserves flow at all nodes of the network

except the slack node. With slack arcs defined as above, all flows

except fixed external flows are arc flows. Conservation of flow for

each node implies that the total arc flow leaving a node minus the

total arc flow entering the node must equal the fixed external flow

at that node. Algebraically, the conservation-of-flow constraint

for a general node i is

50

fk akf k b±.
Moi i

4.3 A Useful Simplification

It is possible to express any network flow problem with

nonzero arc lower bounds as an equivalent problem with all zero

lower bounds. Therefore, we delete the lower bound from the

parameter list by making the following transformation for each arc

k(i,j) with nonzero lower bound

a) replace ck by zero

b) replace ck by ck - ck - k

c) replace fk by f = fk -- k

d) replace bi by b-bi -k

e) replace bj by b b + ak.ko

This transformation is performed one arc at a time for all arcs with

nonzero lower bounds. Each new transformation uses the updated

parameter values that resulted from the previous step.

51

4.4 Expanded Networks

It is convenient from the viewpoint of obtaining optimal

solutions to the generalized network flow programming problems to

define an expanded network which may be obtained directly from the

original network.

We define the mirror arc, -k, for each ke M such that arc -k

connects the same nodes as arc k, but has opposite direction.

o(-k) - t(k)

t(-k) o(k).

The expanded network, DE - [N,M], has the same node set as D =

N,M], but its arc set contains not only the arcs of D, but also

all of the mirror arcs as well. That is, if M - [1,2,...,m] then ME

If the expanded network parameters are denoted with

asterisks, their general definition may be written as

Forward arcs: hk - hk

a k ak

I-I

52

Mirror arcs: h-k -hk /ak

ak 1/ ak .

Flows in the expanded network imply changes in the flows of the

original network by the relation

ffk (f-k)(ak) f*f a
kfkk-k* / k

where A is the change in flow in the original network. The

procedures will assure that a forward and mirror arc will never

simultaneously have nonzero flow.

4.5 The Marginal Network

The marginal network D - N,M] has the same node set as

D and DE. The arc set D consists of that subset of ME that are

admissible arcs. A forward arc is admissible if the flow is not

already equal to the arc capacity, that is if the flow can still be

increased on that arc in the original network. A mirror arc is

admissible if the flow on the corresponding forward arc is not equal

to zero; that is if the flow can be decreased on the associated arc

in the original network.

53

4.6 Basis and Basic Solutions

The basis for a generalized minimum cost flow problem will

consist of n-1 arcs chosen so that the associated n-I columns are

linearly independent. For a pure network problem, such a selection

forms a directed spanning tree. For the generalized problem, a

selection of n-i linearly independent columns may result in a more

general form. In particular, a basis for a problem may contain one

or more cycles.

To illustrate these concepts consider the network-of Figure

4.1. In this figure no slack node has been explicitly defined. For

this example we arbitrarily choose node 1 as the slack node. The

constraint matrix formed by the conservation-of-flow equations is

ARCS

1 2 3 4 5

-a[02 I] : NODES
0 0 -a4 - 5j4 .

Note that the constraint associated with the slack node has been

deleted. This constraint is redundant and must be deleted to obtain

a set of independent rows. Our problem is to choose a set of three

54

independent columns from this matrix. The set will be independent

if the square matrix formed by the columns has a nonzero

determinant. For example, if we choose the columns whose associated

arcs form a tree, arcs 1, 3, and 4, the basis matrix becomes

B 0.[-a 3]

The determinant of the basis matrix is

JI -a Ia 3a4 *-.

Since the gain factors are nonzero, this determinant can never equal

zero. It can be shown that for a generalized network, any selection

of columns that describes a tree can be arranged to form a matrix

with diagonal elements equal to the gain factors and the lower

off-diagonal elements equal to zero. Thus JBI, the determinant, can

always be written as

fBI +± 11 ak
ke MB

55

where M is the set of arcs in the basis tree.-
B

In order to form a tree in the manner just shown, one of the

arcs chosen must originate at the slack node. Otherwise it is

impossible to arrange the arcs so that the first column has only one

nonzero element. Pictorially, we will represent such a basis as a

directed tree rooted at the slack node. Where it is necessary, we

will use mirror arcs to obtain the directed tree. Figure 4.2

illustrates two basis trees for the example problem.

Next, consider the case in which the arcs chosen form a

cycle. For example, select arcs 3, 4, 5 from Figure 4.1, su that

1 1 01
B a3 0 1

and

BI a 4 'a3a5.

If B +. 0 then the cycle is an acceptable basis. We note that the

cycle forms a basis if and only if

56

a 3a 5 + a4

or

a 3a 5 /a 4 4.1

This has a graphical interpretation which is illustrated in Figure

4.2. Starting at node 2 and passing around the cycle, we encounter

arcs 3, 5, -4. The gain of the cycle is then defined as the product

of the gains that form a cycle. We assign the symbol to the cycle

gain. Thus for the example

a aa a4

and this cycle would be an acceptable basis if $does not equal one.

In general, it can be shown that for a basis component with

arcs MB that includes cycle arcs M C (M cC MB), the determinant of

the associated matrix will be proportional to

Tr ak Tfal
k e MB ke BM

We represent a basis component that includes a cycle as a directed

graph with all noncycle arcs directed as if the cycle were the root. -

It is convenient to think of these arcs as a tree rooted at a cycle.

A particular basis may be a combination of components as illustrated

57

2 2

A3 1 4

3 3

(a))

(a) and (b) are spanning trees

(c) is a network with a cycle

3

(C)

Example of Basis Networks
Figure 4.2 1

58

in Figure 4.4.

4.7 Pointer Representation of the Basis

To represent the components of a tree, three labels are

assigned to each node. For node i, the three labels would be the

back pointer P (i), the forward pointer PF(i), and the right pointerBF

PR(i). The back pointer is the unique arc which terminates at node

i. The forward pointer is the terminal node of the arc originating

at node i. The right pointer is the node appearing to the right of

node i in the tree. The basis can also be represented with the

preorder traversal method (37). In this method the preorder

traversal list P simply stores the pointer representation where

P (i) is set equal to the node number to which node i points. In

our descriptions, as well as in Jensen and Barnes (46), the root ,

node is always the slack node. Figure 4.5 illustrates these

concepts.

4.8 Linear Programming Results for Network Models

In order to relate material presented in Chapter 3 and to

help lay the foundation for much of the material presented in

Chapters 5 and 6, it seems appropriate to summarize some of the

.59

Basis Cycle --

Figure 4.3

S

Basis weith Several Components
Figure 4.4

60

108

20

5 2

10

3 19

2 9

14

Node 1 2 3 4 S 6 7 8 9 10
PB Arc) 0 7 1 21191-101 91-161 211 141 201
IPF(Node) I 3 I 0 I S I 61 01 91 O 71 101 0
PF ode) J 0 0 01 01 21 01 01 40 01 8

Basis Network with a Cycle
Figure 4.5

61

major results of linear programming theory that pertain to network

flow problems. In terms of the parameters and terms previously

defined in this chapter, the generalized single commodity linear

minimum cost flow problem may be presented as the linear programming

primal problem:

m
Min Z fk (4.1)

k=i

S.T. Z fk Z akf k b i i-l,...,n-1 (4.2)
k E Moi kE MTi

f ck kl,•••,m (4.3)

fk >0 k-l,...,m (4.4)

where node n is the slack node.

The dual to the linear program, may be written as

n-I m
Min E ibi + E 6 kek (4.5)

i-I k-1

S.T. ri - akrj + > -hk kil...,m

i-O(k), J-T(k) (4.6)

7i unrestricted il,...,n-I (4.7)

k > 0 (4.8)

62

The primal-dual conditions for an optimal solution of the

linear program have been specialized to the generalized minimum cost

network flow problem in the following three theorems.

THEOREM I: Given a solution F to the primal problem and a solution

Err , 6] to the dual problem, the solutions are optimal if and only

if:

1. F is feasible for the problem; that is

(4.2-4.4) are satisfied.

2. [i ,S is feasible for the dual problem;

that is (4.6) and (4.8) are satisfied.

3. Complementary slackness is satisfied; that

is

(a) If fk(i,j) > 0 then i - ak' + 6 k

hk.

(b) If fk < ck, then6k = 0.

(c) If Wi - aki" + 6 k > -hkv then fk(ij)

-0.

(d) If 6k > 0, then fk ck"

Since C > 0, a restricted condition of dual feasibility may be

succinctly stated as follows:

63

THEOREM 2: If [T , 6 I is an optimal solution to the dual problem,

then6k = max O,-hk - ri + ak r J"

Theorem 2 allows the optimality conditions for the problem to be

written as follows:

THEOREM 3: Given a solution F to the primal problem and a partial

solution T to the dual problem, the solutions are optimal to their

respective problems if and only if the following considerations are

satisfied:

1. Primal feasibility.

2. 6k = max [O,-h k - i + akj]

(restricted dual feasibility).

3. Complementary slackness:

(a) 7i -aki = -hk for 0 < fk < Ck

(b) fk 0 for i-ak j > -hk "

(c) fk Ck forT - ak T < -h

These results lay the foundation for various solution procedures

used to solve generalized network flow problems, which will now be

64

presented.

4.9 Solution Algorithms for Network Flow Problems

A wide variety of solution algorithms have been introduced

to solve network problems of various types. In general, they are

finite iterative procedures designed to obtain a solution that

satisfies the conditions stated in section 4.8: primal feasibility,

restricted dual feasibility, and complementary slackness. The major

difference between the algorithms is the order in which the

conditions are satisfied. Each of the algorithms generally takes on

a different form as it is applied to various problem classes, but

the steps noted below are consistently followed. While the

conditions for optimality do not require that the solutions be

basic, maintaining a basis will often result in a savings of

computational time.

(a) Primal Approach - The primal approach

iteratively derives F and Tr such that F is

primal-feasible while attempting to achieve

complementary slackness. If we define ck)

a measure of the violation of complementary

slackness for arc k, as

65

ck max [dkfk, (- ck)dk

for feasible flow, eck will be positive if

and only if complementary slackness is

violated. Let

m' -

Ec Z eck.'

When E is driven to zero, F is optimal.
C

ALGORITHM

1. Find F and 7r that satisfy primal

feasibility.

2. Find an arc such that eCk > 0. If

there are none, stop. Otherwise go to

step 3.

3. Find a new F and iT that reduce eck for

the arc while maintaining primal

feasibility. Go to step 2.

66

(b) Dual Node Infeasible Algorithm - The dual

node infeasible algorithm maintains

complementary slackness and satisfies all

primal feasibility requirements except

conservation of flow. Let b be the

external flow requirement at node i that

would satisfy conservation of internal

flows at node i, under current arc flow

requirements. Let eNi - I - b/I be a

measure of the infeasibility for node i and

let

N-I
EN e Ni.i-I

In this approach we achieve optimality by

iteratively changing F and r in such a way

to ultimately force EN to zero.

ALGORITHM

1. Find , and F > 0 that satisfy

complementary slackness and the arc
/

capacity restrictions. Let bi be the

67

node flows required to obtain

conservation of flow.

2. Find a node such that e Ni > 0. if

there are none, stop. Otherwise go to

step 3.

3. Find a new F and ir that reduces the

infeasibility of the node while

maintaining complementary slackness

and arc feasibility. Go to step 2.

c) Dual Arc Infeasible Algorithm -During each

iteration of the dual arc infeasible

approach, complementary slackness and

conservation of flow conditions are

satisfied. However, one or more arcs will

have flows above their capacities or below

zero. Let e~k - max [-fk O'f k-ck]be

a measure of infeasibility of arc k. Let

k!i

68

measure the infeasibility of the network.

The dual arc infeasible algorithm achieves i
optimality by iteratively modifying F and iT

to force E Ar - 0

ALGORITHM

1. Find an initial F and iT that satisfies

complementary slackness and

conservation of flow.

2. Find an arc k for which e Ak > 0. if

none exist, stop. Otherwise go to

step 3.

3. Modify F and 7r in order to reducee

while maintaining conservation of flow

and complementary slackness. Go to

step 2.

4.10 Network Manipulation Subroutines

At this point we have presented all the necessary background

except for one major area. In Chapters 5 and 6, numerous references

will be made to various subroutines developed by Jensen and Barnes

(46). It would be impractical to recreate the development of these

69

subroutines at this time. Instead the following material is a

review of the purpose of each subroutine referenced.

a) ADDTRE- To add an arc k(i,j) to a forest of
trees. Node i and j must be in different
trees and node j must be the root of a
tree.

b) CYCLE- To compute the gain of a cycle defined
by the backpointers and the cost of
circulating one unit of flow around the
cycle.

c) DELTRE- To delete an arc from the pointer
representation of the tree.

d) DSHRTG- To derive the shortest path from node.
s to node t in a generalized network when
all costs are positive and all gains are <
1. -

e) DUAL- To compute the dual variables for the
basis network rooted at a given node II.

f) FLOWG- To change the flow in each arc by an
amount prescribed by MF and G(J). (See
Chapter 5 for a definition of these
quantities).

g) ORIG- To determine the list of arcs
originating at node I.

h) ORIGSG- To accept an arc data item and store
it in an arc list ordered by ascending
origin node.

i) PSHRTG- To solve the shortest path problem
for the generalized network.

J) READG- To read and store node and arc data
for the generalized minimum cost flow
problem.

I°

70

k) ROOTG- To find the list of arcs (LISA) and
the list of nodes (LISN) that are in the
'directed tree rooted at node IROOT.

1) TERM- To determine the list of arcs
terminating at node I.

m) TERMS- To create LT, a list of arc indices in
order of increasing terminal node.

n) TREINT- To construct a pointer representation
of a tree given knowledge of the back
pointer arcs ;hich make up the tree.

o) TRECHG- To delete an arc k from the basis
tree, insert another arc k in the basis
tree, and redirect certain arcs in the tree

to maintain a directed tree.

CHAPTER 5

PARAMETRIC ANALYSIS OF A GENERALIZED NETWORK

5.1 Introduction

In this chapter we will describe an algorithm to perform

parametric analysis on the capacity vector and the external flow

vector of a generalized network. The mathematical development of

this material as related to linear programming theory can be found

in Chapter 3, sections 3.8 and 3.9. We will first develop the

detailed algorithms for the variation of the capacity vector and

then extend this to the external flow vector.

5.2 Parametric Analysis for Arc Capacities

The parametric sensitivity analysis algorithm described in

this section is applicable to the generalized minimum cost flow

problem in which the signs of the arc costs and arc gains are

unrestricted. The algorithm is a dual algorithm since the iterative

step first selects an arc to be deleted from the basis and then

selects another arc to be added to the basis. We may state the

71

72

general steps of the algorithm as follows:

1. Solve the original problem to optimality.
2. Specify the list of candidate arcs and the

list of parametric parameters.
3. Find the flow augmenting trail or trails

which are generated by nonbasic candidate
arcs . Determine the arc to leave the
basis.

4. Find an arc to enter the basis.
5. Change the basis by deleting the leaving

arc and inserting the entering arc. Modify
the dual variables to satisfy complementary
slackness for the new basis. Return to
step 3.

Before stating the algorithm in detail, each step of the outline is

discussed.

5.3 Initial Optimal Solution

The initial problem can be solved to optimality by either a

primal simplex algorithm or a dual flow augmentation algorithm for

the generalized minimum cost flow problem. For details of these

solution methods, which will not be repeated here, see PGAINS [46,

pg 3321 and INCREMG [46, pg 314].

73

5.4 Candidate Arc and Parametric Parameter Lists

For any mathematical program, the analyst may wish to

determine how the solution will vary if certain parameters are

changed. As outlined in Chapter 3 section 3.8, if the vector of

capacities C is changed to be C + A C, then a new series of optimal

bases can be determined as a function of the scalar A . We will

call the arcs whose capacities are to be varied the candidate arcs

and let X be the set of candidate arcs. Associated with the

candidate arc set is the parametric parameter set P. The elements

of P are the rates at which the capacities on the candidate arcs are

to be changed.

5.5 Computing the Effects of Parametric Changes on Basic Flows

Parametric or sensitivity analysis requires that one be able

to specify the effects of various parametric changes on the flows in

the basic arcs. Assuming the original network problem has been

solved to optimality by some procedure, a set of basic arcs is

defined with flows on each basic arc. An example network problem is

shown in Figure 5.1(a) with the optimal solution shown in Figure

5.1(b). Basic arcs are shown with heavy lines. Nonbasic arcs at

their lower bound (zero) are not shown. Nonbasic arcs at capacity

74

[o~io~] ~ % 5(20,10.9) ~

2a 7

4b

Generalize Netor Fl1Polmwt 6OtmlSlto
Figure S0

13211

75

(c) are shown as dashed lines. The following sections describe how

the marginal flow change in each basic arc is determined for various

changes in the network parameters. Throughout this discussion, the

networks of Figures 5.1, 5.2, and 5.3 are used as examples.

5.5.1 Flow Change at a Node

If the external flow changes at a node, the marginal changes

in the basic flows can be predicted by the procedures of this

section. The same procedures will be expanded in the next section

to find the marginal flow changes caused by capacity changes of a

nonbasic arc.

In order to develop the relationships that guide the flow

changes at a node, we require some additional definitions. A flow -

augmenting trail is a list of basic arcs. The first arc on the

trail may either originate at the slack node, node n, or at a node

on a cycle. The last arc on the trail may terminate at any

arbritary node v. Later we will specify exactly what this last node

will be in our applications. We will define the node gain for any

node u, Y u, uE N, as the inverse product of the arc gains on the

trail from node u to the last node on the trail. We will denote T

as the set of arcs on the trail from node u to the last node on the

trail and Yu I if u is the last node on the trail. Once the

76

value of Y is computed, where u is any node in the network, we can
u

compute the flow in a basic arc k(ij) as a function of the flow

change at node J. Let A be the flow increase at node J. The

corresponding increase in arc k is

A k Yj A/ak.

To illustrate the concept of flow augmenting trails,

consider a trail from node 11 to node 9 in Figure 5.1. In this case

the arcs on the trail are (14,6,2,221 and the nodes on the trail are

[9,6,3,1,11]. Note the trail is found by tracing the backpointers

from the end of the trail. We may calculate the node gains for each

node on the trail as

7Y9 - 1

Y 1/a4
76 = /14 /

Y 3 /(a14a6)

Y 1 - I/(a14a6a2)"

Y 1 1 /(a14a6a2 a2 2).

As an example of a trail including a cycle, consider the trail

starting at node 6 and goes to node 7 in Figure 5.2. The arcs on

the trail are (11,5,7,-6,121 and the nodes are (7,5,2,3,61. Again

77

A 7

Ic a 0

00

C4)

C4-

C4C

Cd Cd)

7I

78

we note that the trail found by tracing backwards from node 7 by

using backpointers. We may calculate the node gains for each of the

nodes on the trail as

Y -1.

7

Y [1/(alla5)](B / a - 1)

Y3 [I/(a 1 1 aa 7)](S /8- I)

Y 6 [1/(a 11 aa 7a_6) (a/- I).

where B is the cycle gain described in section 4.6.

Thus in general, If node u is not on a cycle we may write

Y 1 a (5.1)u k~kE T
u

and if node u is on a cycle

Yu (/ ak)(8/8-) (5.2)
U .

and Y - 1 if u is the last node on the trail.

U~

79

5.5.2 Capacity Change on a Single Nonbasic Arc

The effect of a capacity change in a nonbasic arc depends on

whether the flow on this arc is zero or at capacity. If the flow is

zero, there is no effect and no analysis is necessary. If the flow

is at capacity, then as the capacity changes the flow in the arc

must change simultaneously so that the arc flow remains at capacity.

The arc will remain nonbasic with flow at its upper bound. The -*

basic flows must change to accommodate the flow change in the

nonbasic arc. Increasing or decreasing the flow in the nonbasic arc

xk has the effect of changing the node flows at its two terminal

nodes.

For a nonbasic arc xk two augmenting trails are defined.

There is an augemting trail that starts at the slack node n or at a

cycle and ends at the origin node of x.. The second flow

augmenting trail starts at the slack node n or at a cycle and ends

at the terminal node of xk . These two flow augmenting trails may

have no nodes in common, or one or more -des in common. There are

many possible combinations of flow augmenting trails. Consider the

nonbasic arc in Figure 5.3(a). In this case both flow augmenting

trails originate at a cycle and end at the origin node and terminal

node of xk respectively. We should note that the trails have no

nodes in common. In Figure 5.1(b), nonbasic arc 20 forms two

80

(b)

Flow Augmenting Trails
Figure S.3

81

trails. One trail starts at node 11 and ends at node 9. it has arcs

[14,6,2,22] and nodes [9,6,3,1,11]. The second trail begins at node

11 and ends at node 10. It has arcs [15,11,5,7,2,22] and nodes

[10,7,5,2,3,1,111. In this case the trails intersect at node 3 and

have common arcs 2 and 22 and common nodes 3, 1, and 11.

In Figure 5.2 nonbasic arc 15 also forms two trails. The

first trail begins at node 5 and ends at node 7. The trail contains

arcs [11,5,7,-6,12] and nodes [7,5,2,3,6]. In this case the trail

originates at a cycle. The second trail begins at node 6 and ends

at node 10. It contains arcs [20,-19,-9,12,5,7,-6] and nodes

[10,9,4,6,5,2,3]. In this example both trails have a common cycle.

In section 5.5.2.we defined T as the set of arcs on the

trail from u to the last node on the trail and Y - I if u is theU '

last node on the trail. For a nonbasic arc xk(i,J) for which the

capacity is to be varied, this is no longer true. We must adjust

the Y 's at the origin and the terminal nodes of xk(i,j) to account

for the effects of the parametric change we are going to make on arc

xk(i,J). In particular for the origin node of arc x,(i,j), node i,

which is the last node of one trail, Yi ' Pk- For the terminal

node of arc xk, node J, which is the last node on the second trail,

j -- kak~

Each trail generated by a nonbasic arc xk will create node

gains for each node on the trail. The following examples will

82

demonstrate that by using a series of additive operations, Y can

be computed depending on where node u is located on the trail.

Example 1: Consider the network shown in Figure 5.1(b). As noted

earlier, candidate arc 20 forms two flow augmenting trails.

Calculating the node gains for the flow augmenting trail starting at

node 11 and ending at node 9, we have

Y9 ' P20

6 = P20 /a14

. 3 P20 /(a14 a6)

I 1 P20 /(a14a6a2)

S11' P20 /(a14a6a2 a2 2).

However we must also consider the second flow augmenting trail from

node 11 to node 10. In this case we calculate the node gains as

Y 10 -P20a20

Y7 ' -P20a20/a15

5 -P2 a20 /(aa15 11)

Y2 - -P2oa20 /(al 5 ala 5)

Y 3 - -P20a20/(a15a11a5a7)

83

I ' -P20a20/(a1 5a11 a5a7a2)

- 1 P20a20/(a13a1 1a5a7a a22).

We note that nodes 3, 1, and 11 have been encountered twice, once

with the flow augmenting trail ending at node 9 and once with the

flow augmenting trail ending at node 10. Thus the node gains Zor

nodes 3, 1, and 11 must be adjusted for these nodes on a common

augmenting trail. Therefore

Y3 = P20 /(a14a6) - p2Oa20 /(a1 5alla 5a 7)

Y I P20 /(a14a6a2) - P20a 20 /(a15alla 5a7a2)

Y 1 1' P2 0/(a1 4a6a2a2 2) - P20a20/(a1 5allaa2a22).

Since the network is linear, we account for the node gains on the

common part of the flow augmenting trail by adding the node gain

values of the first flow augmenting trail to the node gains of the

second flow augmenting trail. The node gains on the unique part of

the flow augmenting trails remain unchanged.

Example 2: Consider the network shown in Figure 5.2. We will now

calculate the node gains for the flow augmenting trails generated by

arc 15. To calculate the node gains for the flow augmenting trail

starting at node 6 and terminating at node 7 we have

RD-R145 558 PARAMETRIC ANALYSIS FOR GENERALIZED NETWORK FLOW 2/3
PROBLEMS(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB
OH M E BRUM MAY 84 AFIT/CI/NR-84-38D

UNCLRSSIFIED F/G 12/1 NL

IIIIIIIIIIIIIl
EIIIIIIIIIIIIu
IIIIIIIIIIIl
IIIIEIIIIhllII
IIIIIfllfllfflfflfflffl
IIIIIIIIIIIIIIh

fr•

111 12.0 12.

L3.2~ *,2

oni~: -12.2

11111I125 LA11111.4 .6

IIIII

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDAROS-1963-AL

AL

84

Y7 -p 15

Y [pl5/all] (/-1)

y 2 EP15 /(al a,)] (a /B 1

Y [pl,/(a11a~a 7)J 88-1

Y6 -(p 15/(a1 a 5 a 7a-6)1 8)

To calculate the node gains for the flow augmenting trail starting

at node 3 and terminating at node 10, we have

10 -P15a15

Y9 --P15 a15 /a 20

Y -P15a15 /(a 20a-19)

Y6 r-pI5a15/(20a 1qa9q)] ($8- 1)

Y5 [-p15 a15/(a2 a 19a_9a 12)](/-1

-2 I-p15 a15/(a20 a_19 a_9 a12 a5)J] / 1

Y3 j-P15 a151(a 20a~l9a~9 a12a a7 J(/ 1)

We note that nodes 2, 3, 5, 6 appear twice. Thus these node gains

must be adjusted since they apppear on a common augmenting trail.

For example the adjusted node gain of node 2 is

85

Y 2= 'P15 /(a11a5) - P15a15 /(a2 0a 19a 9a1 2a 5)] (0 /a- 1)

and the node gains for nodes 3, 5, and 6 may be adjusted similarly.

The node gains on the unique parts of the flow augmenting trails

remain unchanged.

5.5.3 Capacity Change on a Set of Nonbasic Arcs

When we consider more than one nonbasic arc, we must take

into account the combined effects of numerous intersecting flow

augmenting trails. We should note that if any of the nonbasic arcs

have zero flow, no further analysis is needed for this arc. The arc

will remain nonbasic as the change on the capacity will have no

effect on the flow since the flow is at zero.

If we consider the example network in Figrure 5.2, we see

that there are two nonbasic arcs, arcs 14 and 15. For each

candidate arc, two flow augmenting trails are produced. For arc 15,

one trail starts at a cycle and ends at node 7 with arcs

[11,5,7,-6,12] and nodes [7,5,2,3,6]. The second trail created by

arc 15 has arcs [20,-19,-9,12,5,7,-6J and nodes [10,9,4,6,5,2,31.

For arc 14 the first flow augmenting trail has arcs (12,5,7,-6] and

nodes [6,5,2,31. The second trail created by arc 14 has arcs

[-19,-9,12,5,7,-6] and nodes [9,4,6,5,2,3].

86

In each case to calculate the Y values for each node on-the

trails, we see that certain nodes are on unique trails, while other

nodes are part of intersecting trails. For example, node 7 has a

unique Y value as no other flow augmenting trails pass through this

node. In particular

W7 " P15 "

This is contrasted to node 6 which is on flow augmenting

trails which end at nodes 7, 10, and 9 respectively. Thus 'Y 6 must

take into account the additive contributions from each of the trails

which pass through node 6. In particular

Y6 [P14 - P14a14/(a- 19a-9) + P15/(a,,a 5 a7a-6)

-P15a15/a20a9a9 (/8- 1).

In order to write the general formulas to calculate the node gains,

we need some additional notation. Define T to be the set of flowm u

augmenting trails that pass through node u. Let T be the set
u ,T

of arcs on the trail TcT that originate at node u and go to theu

end of the trail. Then we can write the general formulas for the

calculation of the node gains as

87

Y PIC R 1I ak) u not on a cycle (5.3)
u TET u keT ,u ~u,T ,ii

Yu / I) / (ak) u on a cycle (5.4)
zTETu k ET u,T

Pk if the trail ends at the origin node of

candidate arc xk

where p.

-Pkak if the trail ends at the terminal node of

candidate arc xk.

5.5.4 Capacity Change in a Set of Candidate Arcs,

When we consider a set of candidate arcs in a network

problem, each arc must have one of three fbrms. First, a candidate

arc may be basic. If this is the case, increasing the capacity will

have no effect on the flows on any other basic arc flows as the

candidate arc under consideration would still have its flow between

zero and its upper bound and therefore remain basic. Decreasing the

capacity of this basic arc will likewise have no effect until the

capacity is decreased to equal the flow on the arc. We note at this

point a basis change will occur.

The second possibility is that a candidate arc may be

nonbasic and have zero flow. If the capacity of the candidate arc

88

is increased, there will be no change in any of the flows in the

basic arcs as the candidate arc under consideration will remain

nonbasic with zero flow. If the capacity is being reduced no effect

will occur. However, we should note that when the candidate arc's

capacity becomes equal to zero, the candidate arc is nonbasic at its

upper bound and that any further reductions in the candidate arc's

capacity will cause the problem to become infeasible.

Lastly, we must consider nonbasic candidate arcs which have

flow equal to their upper bound. Changes in the capacity by either

increasing or decreasing the nonbasic arc under consideration will

cause flow in the arc to change simultaneously. These arcs will

remain nonbasic at their upper bounds. However, we must adjust the

basic flows to accommodate these flow changes in the nonbasic

candidate arcs at their upper bound in the manner of section 5.5.3.

5.5.5 Computer Implementation of Flow Augmenting Trails

The subroutines used to calculate the node gains for the

flow augmenting trails are PATH, TRAIL2, and CYCLEG. Subroutine

PATH is called by the main program PSENG when a flow augmenting

trail is to be calculated for a nonbasic candidate arc with flow

equal to its upper bound. TRAIL2 is called by PATH when a node is

encountered on a common part of a flow augementing trail. CYCLEG is

. * * * -~ *. "4 --

89

used to compute the gain of any of the cycle(s) found during PATH

and to update the node gain for each of the nodes on the cycle(s).

For the computer implementation of the concepts developed in

section 5.5.1 through 5.5.4, we need to define the variables which

are used in the BASIC code. For each node on the flow augmenting

trail(s) we assign a node check value, denoted IK(IJ), to enable us

to determine if a node has been previously encountered on a flow

augmenting trail. We use the computer coding technique to set the

value of MULT to equal +1 if we are begining the trace of a flow

augmenting trail that terminates at the origin node of Xk, or we set

MULT equal to -1, if we are starting a trace of a flow augmenting

trail that ends at the terminal node of xk . LN refers to the list

of nodes encountered and LA refers to the list of arcs encountered

on the trail(s). IC is a counter to indicate the number of nodes we

have encountered and CK is an indicator if this node has only been

encountered on this trail (ie, on a cycle). The RC(Z) list is a

list of root nodes of all the cycles encountered during the various

passes through the flow augmenting trail(s). The G(IJ) list

contains the node gain values for each node encountered on the flow

augmenting trail.

We should note that the subroutine PATH in conjunction with

TRAIL2 and CYCLEG differ from the subroutine PATHPG (46, pg. 323] in

three ways. First, for each candidate artz xk, the parametric

90

parameter must be taken into consideration. Second, the Y 's are

calculated additively for each flow augmenting trail created by a

ca'didate are. Finally, if a cycle is encountered, the root node of

the cycle is entered on the root cycle list [RC(Z)]. Then after all

the flow augmenting trails have been generated, the cycle gains are

calculated for each cycle in the root cycle list and then each node

gain on a particular cycle is updated.

As an example of the use of PATH, consider the application

to the network shown in Figure 5.2. The following information is

known concerning the arcs whose capacities are being varied. The

candidate arcs are

X - [5,6,7,11,14,15,201

and the parametric values are

P = [-.3,1.2,-2.1,-0.67,0.1,-3,1.41.

We note that only arcs 14 and 15 are considered in this analysis as

they are the only nonbasic candidate arcs at their upper bounds.

The list of basic arcs at the current optimal solution is

91

PURPOSE: To find CPATH(IJ,MIULT,I,XK,PIKCK)
the flow augment-
ing trail for a
generalized net- INITIAL
work and compute
V's for each node IK(IJ) = 0
on the trail.
1.(INTIAL) If node N(IC+I):-IJ
IJ has never been
encountered (IK(KE'NU.LT > 0 KK*HULT > 0
IJ)O),put IJ in LN
and calculate ^ for G:-P*MLTLT G:-P*A(XK)* G:mP*HULT P:mP*A(XK)*
node IJ. Otherwise MULT MULT
node IJ was visited
before. Update node G(IJ):- G(IJ) + G TRAIL2(IJ,G)
gains with ThAIL2
and RETURN. --- >ROUTE RETURN
2.(ROUTE) Identify
arcs on the flow
augmenting trail. ROUTE
Find the back
pointer of the cur- K:- PB(IJ)
rent node. If zero
the slack node has K-O
been visited. If
not find next node IC:- K > 0
in trail and check IC+l
if visited. If not LA(IC) IJ:-O(K) IJ:-T(-K)
add IJ to LN and K :,0
to LA. Update node IK(IJ) > 0
gain and node
check value , go to IC:- IC+l IC:-IC+1,LA(IC):-K
2. Othervise,check LA(IC):-K LN(IC+I):-IJ
if node only visit- .
on this path (IK > IK(IJ) > CK K > 0
CK).If so put IJ onroot cycle list and Z:-Z+I. >0
return. Otherwise, I
IJ has been visited RC(Z) G:-G/ G:.G* G:-G/A(K) G:-G*
on a previous flow :1lJ A(K) A(-K) A(-K)
augmenting trail.
Call ThAIL2 to up- n1RAIL2(IJ,G " G(IJ):-G(IJ)+G
date Y's on common
trail and return. CK:IC IK(ZJ):.I-C+

TURN -- >)OUTE

Subroutine PATH

Figure 5.4

92

PURPOSE: Update QTRAIL2(IJG)
values on common
trail found in
PATH. INITIAL

1.(INTIAL) Set all I:IJ, CI:-O
node check values
to zero. Update Q:- I TO N
7 value of common /
node IJ. F/_L(Q):"n 0

2.(ITBACK) Look at L(U):- 1, G(HI):--G(HI)+G
back pointer of IJ.
If it is zero, the
slack node has been ITBACK
encountered, re-
turn. If not check K:- PB(IJ)
if node has been
visited before, if Y K - 0
not update check Y\

value and 7 for K>0 N
node. Go to 2. If
node has been vis- IJ:-O(K) IJ:-T(-K)
ited before, a root
of a cycle has been CI:-CI+.
found, return.

IL(IJ) > 0"".

K > 0 _ 1

G:mG*IA(K) G:-G*A(-K)

G(IJ) :-G(IJ)+G

TURN ->I TRACK

Subroutine TRAIL2
Figure 5.5

93

PURPOSE: Compute r CYCLZC)
the gain of a cycle
defined by the back
pointers and to up- INITIAL
date the node gains
for each node on a II:- RC(I)
cycle by its cycle
gain. I > Z N

l.(INITIAL) Set II CYCLE(11,BT,COST)
to be root node of
cycle from cycle TURN -- >MULTIPLIER
list. If all
cycles have been
updated (I > Z), MULTIPLIER
return. Otherwise
calculate cycle :-PB(IJ)
gain for cycle
RC(M) by calling (IJ):= G(IJ)*(BET)/(BET-1)
CYCLE.

Y [> 0
2. (MULTIPLIER) Up-
date 7 values for IJ:0O(K) IJ:-T(-K)
for each node on
cycle RC(I). Up- IJ --
date I and go to 1.

I:- 1+1

->INTIAL ->MULTIPLIER

Subroutine CYCLEG
Figure 5.6

94

[-3,5,-6,7,-9,11,12,-18,-19,20J..

The basic arcs are shown in Figure 5.2 as solid lines and the

candidate arcs at capacity by dashed-dot lines.

At the conclusion of PATH for the candidate arc 14 ending at node 6,

the following information has been obtained:

Node List: LN = (6,5,2,3]

Arc List : LA - [12,5,7,-61

Nodes Visited: IK = [0,3,4,0,2,1,0,0,0,0,]1

Node Gains: G - [0,0.057,0.067,0,0.143,0.1,0,0,0,0,0]

Cycles Encountered: Z 1 1

Root Cycle List : RC(1)- 6

Nodes Encountered: CK - 4.

We have simply followed the back pointers from node i 14 6

until a node is encountered that has been visited before. In this

case the node is node 6, since a cycle is formed. The list IK

serves the purpose to mark nodes that have been visited. At this

point node 6 is entered on the root cycle list [RC(1) - 61 and CK is

set to 4 to indicate a cycle has been found on this augmenting path.

LK contains the nodes in the order that they were encountered by

PATH, and LA contains the backpotnters of the nodes in LN. These

. O N "J

95

backpointers comprise the list of arcs in the trail. IC-is a

counter to indicate how many nodes have been encountered. The G

list indicates the value of Y for each node.u

At the completion of PATH for arc 14 ending at node 9, the

lists have been updated to read:

LN - [6,5,2,3,9,41

LA - [12,5,7,-6,-19,-9]

IK - (0,3,4,6,2,1,0,0,5,0,0]

G - [0,-.57,-.06,-.25,-.14,-.1,0,0,-.1,oOI

CK- 6 Z - I RC(1) - 6.

Note that when node 6 is encountered IK(6) - 1 and CK = 6

indicating this node had been encountered on a previous cycle and

the Y 's need only be updated for the common part of the flow
U

augmenting path. Recall the effects of the cycle gain, 8 /(8 - 1),

will be accounted for after the calculations for all the flow

augmenting paths are completed.

We must now also add in the effects for the candidate arc,

xk - 15. After the completion of PATH ending at node 10, the lists

have been updated again to be:

96

LN = [6,5,2,3,9,4,101

LA - [12,5,7,-6,-19,-9,201

IK - [0,3,4,6,2,1,0,0,5,7,0]

G - [0,2.85,3.36,6.12,7.14,5,0,0,2.45,2.55,0]

CK - 7 Z - I RC(M) - 6.

In ROUTE node 9 is again encountered, so the additive effects for

the common augmenting path updates the G list.

After the completion of PATH ending at node 7, the lists

have been updated to read:

LN - [6,5,2,3,9,4,10,71

LA - [12,5,7,-6,-19,-9,20,11]

IK - [0,3,4,6,2,1,8,0,5,7,01

G - [0,1.65,1.94,6.12,4.14,3.72,-3,0,2.45,2.55,0]

CK - 9 Z - I RC(1) - 6.

As there are no more candidate arcs to be considered, the

cycle gain for the cycle encountered during PATH needs to be

calculated. In this case it is rooted at node 6 and contains the

nodes 2, 3, 5, and 6. The cycle gain is 1.65 and the updated G list

looks like:

97

G -(0,4.19,4.93,6.12,10.49,9.44,-3,0,2.45,2.55,0]

and the lists LN, LA, and IK remain unchanged.

5.6 Computing Maximum Parametric Variation of Capacities and

Finding the Arc to Leave the Basis

As in the previous sections, we assume we have an optimal

solution to a given network flow problem. We define the maximum-

reference number, r, as the maximum flow augmentation that will

drive a basic flow to zero or capacity or drive a candidate arc's

upper bound to zero. Then as we change the capacity on a candidate

arc xk, the new capacity on the candidate arc will be

ck , ck +pkr (5.5)

where k cX and c.k is the capacity, Pk is the parametric parameter,

and r is the reference number of the candidate arc.

We now need to determine the maximum positive increment rk

that will drive a basic flow to a bound or cause the capacity on a

candidate arc to go to zero. Assume there are initial flows in the

arcs on the flow augmentation trail(s), identified as f k or -

depending on whether k is a forward or a mirror arc. We should note

that since arc k is basic and if Pk is not equal to zero, the

98

capacity on the basic arc is changing as well as the flow. Thus we

must monitor the simultaneous effects of both changes. Recalling

that rk is defined as the maximum flow change that will drive the

flow in arc k to one of its bounds, we need to consider two cases.

CASE 1: k is a forward arc

If k > 0, then the flow change in the original network

implied by a flow increment r is

k = Y r/ak

where Y is the node gain at the terminal node of arc k. Since the

initial flow on arc k is defined by fk' then the flow in arc k after

a flow increment is

f k + Ak MA k + Y r/ak"

Since r is greater than or equal to zero, the direction of the flow

change depends only on the sign of Y j/ak.

SUBCASE A Y j/ak 2 0 : WithY i/ak positive, the arc flow

increases. Since r is the value of the reference number that will

drive a basic flow to zero or a new capacity, ck + pkr, the new flow

99

will be limited by

f+ Yr/ak) < ck + Pk r

or the value of r that drives the basic arc k to its upper bound is

rk - (ck - fk)ak/(Yj - Pkak). (5.6)

We should note that if - Pkak < 0, the new capacity is

increasing quicker than the flow is changing. This means this arc

would remain basic since the new flow will always remain less than

its new capacity. We set rk O D , since it will not create a

limiting value.

SUBCASE B Yj/ak < 0 In this case, since the factor Y /ak is

negative, the flow in arc k is decreasing with r. The new flow will

be limited by

0 < f + Yjr/ak ck+Pkr.

However, two possibilities can occur. If Yj - Pka < 0, the flow

is going to zero quicker than the capacity and therefore the

limiting value of r for arc k is

rk = - fkak/ YJ (5.7)

100

or the capacity could be decreasing faster than the flow is

decreasing, (Yj - Pkak) > 0, so in this case

rk (ck - fk)ak/(Y - Pkak). (5.8)

CASE 2: k is a mirror arc

If k < 0, then the flow change in the original network

implied by a flow increment r is

-Y
-k j

where j = o(-k). Since the initial flow on arc k is defined by f-k

then the flow on arc k after a flow change is

f-k + A-k f-k -Y r.

SUBCASE A Y < 0 : With Y < 0, the arc flow will

increase and the value of r which drives it to the new capacity,

c-k + p-kr, will be limited by

f -Y r < c- + p r

-k k A
or the limiting value when YJ + P-k < 0 is

+ P-

101

rk '(f-k - C-k)(Yj + P-k) " (5.9)

If YJ + P-k > 0 the new flow is increasing at a slower rate than

the capacity. This means this arc would remain basic since the new

flow will be less than the new capacity. Therefore we set rk -

as it will not create limiting value.

SUBCASE B Y > 0 : In this case, since the factor Yj > 0, -Y r

is negative, and the flow in arc k is decreasing. Thus the flow

will be limited by

0 < f-k - Y jr < c k + p-kr.

Again two cases exist. If Y 0+ k 0, the flow is going to zero

faster than the capacity and thus

rk = i-k/ Yj. (5.10)

Otherwise the capacity could be decreasing faster than the flow is

decreasing, so

rk - (f-k - ck)/(Y J + P-k " (5.11)

102

For each of the six possibilities listed above in equations

(5.6) through (5.11), rk is positive. The maximum reference number

or flow increment for the trail(s) is the reference number that will

drive the flow on one or more arcs to zero or its capacity without

causing any other flow to be infeasible. Thus

r1 = Min {rk} (5.12)

Q

where M Q is the set of arcs on the flow augmenting trail(s) and rk

is determined as in equations (5.6) through (5.11).

We must also consider the possiblity that a nonbasic

candidate arc will have its capacity to zero. Thus for each

nonbasic candidate arc with Pk < 0, we must calculate

rk a Ck/-Pk. (5.13)

If a nonbasic candidate arc has a positive parametric parameter,

> 0, we set rk = D as this arc will not create a limiting value of

r.

Again we need to calculate the maximum reference number for

the nonbasic candidate arcs

103

r Min {r k (5.14)
XR

where XR is the set of of nonbasic candidate arcs and rk is

determined as in equation (5.13).

We must pick the smallest of the reference numbers

calculated in (5.12) and (5.14), as this will be the maximum

reference number or flow increment r that will either drive a basic

arc to zero or capacity or a nonbasic arc's capacity to zero. Thus

r Min {r,, r2}

The MFLOG2 subroutine is use to find the maximum -flow change

in the trail, given the Y values and the list of arcs and nodes in

the trail(s). PSENG calls MFLOG2 after all the flow augmenting

trail(s) have been scanned. MFLOG2 will determine the basic arc

that limits the flow change on the flow augmenting trail(s) and thus

the are which may leave the basis. As in Chapter 10 (46), the FLOWG

subroutine modifies the arc flows for a given trail or trail(s) and

a given value of r.

To illustrate some of the types of calculations that are

performed in MFLOG2, consider the optimal basis shown in Figure 5.2.

The list of candidate arcs are

i

104

[5,-6,7,11, 14,15,201

and the associated parametric parameters are

(-0.3,1.2,-2.1,-0.67,0.1,-3,1.41.

The basic arcs on the flow augmenting trails are

[12,5,7,-6,-19,-9,20,11].

At the end of PATH we have calculated the following values for

then nodes 1 through 11 -

G [0,4.19,4.93,6.12,10.49,9.44,-3,0,2.45,2.55,01.

As an example of the calculations preformed in MFLOG2 consider arc

20. For arc 20 we have Y /a20 = 2.55 and this means we are in

case 1. Calculating r20, we have

r20- (c20-f20)a20 /(Y10 - P20 a20)

- .843.

105

PURPOSE: To find MLOG2(ZCKLMP)
the maximum flow
augmentation possi- INITIAL
ble on all basic
arcs in LA creat- 0- 0, MF:- 9999, I:- 0
ed by flow augmen-
ting trails.

START
1.(INITIAL) Set
the leaving arc to :-I+.
zero, the umximum
flow to a large I > IC
number, and loop
counter to zero. TURN _>CALCULATE

2.(START)
Incre-

ment the loop CALCULATE
counter. Check if
all arcs in LA have :-LA(I), Dl:-9999, D2:-9999
been checked. If
so return. Other- K - 0
wise go to 3. sTART K > 0

3.(CALCULATE) Set
k to the LA(I). If ->FORWARD -- >MIRROR
k is zero, go to 2.
Otherwise check if
k is a forward arc. FORWARD
If so go to 4,
otherwise go to 5. J:-T(K)

4.(FORWARD) Set j \ G(J)/A(K) 0
equal to the term-
inal node of k. De- (J)P(K)*A(K)<O N Y G(J)-P(K)*A(K)<O
termine the appro-
priate values of Dl:- D1:=
DI and D2. Go to (C(K)-F(K))*A(K)/ (C(K)-F(K))*A(K)/
6. (G(J)-P(K)*A(K)) (G(J) -P(K)*A(K)

D2:- -F(K)*A(K)/G(J)

TART -- >COMPARE

Subroutine MFLO2

Figure 5.7

106

5.(MIRROR) Set j to MIRROR
the origin of node
-IL. Calculate Dl J:-O(-K)
and D2 as appro-

priate. Go to 6. G(J) < 0 N

6.(COMPARE) If the Y J) + P(-K) < 0 N G(J) + P(-K) >
new value of Dl or
D2 is less than MP, Dl:- Dl:-
replace MI with the (F(-K)-C(-K))/ ((K-(K)

new value and keep (G(J)+P(-K)) (G(J)+P(-K))
track of the leav-
ing arc. Go to 2. D2:-F(-K)/G(J) ->

->COMPARE STA

COMPARE

Dl > D2

Dl:-D2

YMF > Dl1

H:-Dl, KU-K

-- >START

Subroutine MFLOG2
Figure 5.7(cont)

107

if we consider arc 11, we are in S1ThCASE Aof case 1 where k > 0%

and Y (0. Me note that Y 7 pjaj< 0 and therefore

1j 7

-1.2.

We may determine the remaining reference numbers for the basic arcs

by the methods discussed in this section and these values are:

r5 3.941

-0.9529

r 7- 4.608

r_ - 0.8257
-9

r 2 0.1482

r_ 19 0.5482

The minimum occurs for arc 12. Therefore the maximum reference

number for the basic arcs is

r -0.1482

108

5.7 Determining the Entering Arc

In the previous sections we developed the mechanisms to find

an arc to leave the basis. Since this is a dual algorithm, we now

need to develop the techniques to be able to select an admissible

entering arc.

5.7.1 Characteristics of the Entering Arc

An entering arc, k., must have two characteristics to enable

it to enter the network. The first characteristic is that the

entering arc muist be admissible. Since the algorithm is applied to

the marginal network representation that admits both forward (k > 0)

and mirror (k < 0) arcs, we define the following admissibility rule:

k > 0 and c k - f k> 0 then arc k is admissible

k < 0and f- >0 then arc-Akis

admissible.

We can state this in a more intuitive manner as

a forward arc is admissible if the flow in the

original arc is less than its capacity and a

109

mirror arc is admissible if the flow in the

original arc is greater than zero.

The second characteristic of the entering arc concerns its

location in the network relative to the leaving arc. When the

leaving arc is deleted from the basis, it divides the. nodes of the

network into sets N I and N2 . The set of nodes which remains

connected to the terminal node of the leaving arc kL (JL) is

designated the N2 set. We will denote the basis subnetwork

containing N2 as D2. We note that D2 always forms a tree rooted at

the terminal node of the leaving arc and no longer includes the

slack node or a cycle. The set N I is the complementary set of

nodes, that is N I - N - N2 * We denote the basis subnetwork that

contains N1 as D I . Thus D I consists of one or more components that

always includes the slack node and any flow-generating cycles that

remain after we delete the leaving arc from the basis.

We may mathematically express the components that are formed

when kL(iLJL) is removed from the optimal basis tree, D - [N,MT] as

Dl - [NI,M 1

D2 - [N2 ,M21

where

110

iLE N1 JLe N2

and

N1 U N2 N

H 1 U - "I- kL .

When arc kL, which may be a forward arc (kL > 0) or a mirror

arc (kL < 0) depending on the orientation required for the spanning

tree, is deleted from the basis, there no longer exists a way to

continue augmenting flow on the candidate arcs. Thus the problem is

to find an admissible arc to add to the basis network that will

reestablish a flow augmentation path to node JL and therefore allow

continued flow augmentation on the candidate arcs. If we let kc MA,

where MA is the set of admissible arcs, k may enter the basis in one

of three ways. First k may join NI to N2 which we may write as ke

(N1 ,N2). The notation (N1,N2) defines the set of arcs each

originating at a node in the set N and terminating at node in N2 .

Secondly, k may join N2 to NJ, which we write as k (N2,NI). Lastly

k could join N2 to N2, which we write as ke (N2,N2). In the first

two cases the subnetwork D is joined to a tree rooted at the slack

node or at a cycle in DI. In the later case a new component of the

basis network is formed from D2 and kE. This component is rooted at

a new cycle.

We now can describe the second characteristic that

determines the selection of the entering arc. It must be one of the

following four cases, which is illustrated by Figure 5.8.

CASE 1: kL is a forward arc and leaves the basis at its upper bound

As kL goes to its upper bound, we may think of additional

flow being put into N2. Thus as kL leaves the basis, k must form a

new flow augmenting path to continue to allow flow to be put into

the set N2 . Thus we must have ke (N1 ,N2) or k (N2 ,N2). When ke

(N2,N2), k forms a flow generating cycle (8 > 1, where 8 is the

cycle gain).

CASE 2: kL is a mirror arc and leaves the basis at its upper bound

As kL leaves the basis by going to its upper bound, we may

think of flow being put into the set N1 . Thus we need a ke (N2 ,N1)

or k e(N 2,N 2), where kc (N2,N2) forms a flow absorbing cycle (8 <

1, where B is the cycle gain).

CASE 3: kL is a forward arc and leaves the basis at its lower bound

As kL leaves the basis at its lower bound, we are

conceptually putting flow into the set N. Thus we must have an arc

ke (N2 ,N1) or k (N2,N2), where in the later case k forms a flow

112

Dtermining the Entering Arc
Figure 5.8

ab.

113

absorbing cycle. (8(1, where 8is the cycle gain).

CASE 4: kL is a mirror arc and leaves the basis at its upper bound

We can again think of flow being transferred into the set N2

as k.L leaves the basis. Here we must have ke (N1,N 2) or kE N2*)

and in the later case k forms a flow generating cycle (>1, where$8

is the cycle gain). This will allow a new flow augmentation path to

put new flow into the N 2 set.

Cases one and four are identical as to the form of ke MA

and cases two and three are the same. Table 5.1 summarizes these

results.

5.7.2 On Determining the New Value of Y

When we are trying to determine the entering arc, we must

again use the concept of node gain. However, in this situation we

need to define node gain differently than for the case of the

leaving arc. In this context, Y uis only defined for the nodes in

the set N2. In this case Y u is defined to be the product of the

arc gains starting at the terminal node of \L(J to node u, where

we define Y -i 1f or u JL Thus we see that if one unit of flow

arrives at JLand travels through D2 to node u the flow arriving at

114

_ L > o K, < 0
KL going k must go from k must go from
to upperbound a) N1 to N2 a) N2 to N1

or or
N2 to N2 (0>l) N2 to N2 (Ol)

KLgoing k must go from k must go from

to lower bound a) N2 to NI a) Y, to N2

or or

N2 to N2 (< I) N2 to N2 (€>l)

Determining the Entering Arc
Table 5.1

115

node u is Y . The node gains can be computed from the structure of
u

the basis tree and the value of Y JL- For any arc k(i,j) that is

included in the tree D2, we have

Y - Yiak for kcM 2 (5.15)

i = o(k)

J t(k).

Node J is the root of a tree in N2 . Assume we have listed the

arcs of in predecessor order (that is an arc appears in the list

after all its predecessors). Since we are given the value of YjL

- 1, progressing through the ordered list M2 we can use equation

(5.15) to compute the node gains for each member of N2. ROOTG

(46,page 2471 obtains the ordered list M2 and NEWGAM, as part of

FIND2G, calculates the Y values.

We note that if kIE (N2 ,N2), arc k will always form a cycle

with gain of

8 ak Y/Yi. (5.16)

This equation will be useful in the algorithms described because it

allows the calculation of the cycle gain without an explict

identification of the arcs on a cycle.

116

As an example consider Figure 5.1(b) in which arc 2(1,3)

leaves the basis. Here J 3 and the value of the node gains in N2
J- 2.

are

3-

2 Y3 a7 a 7

5 Y2a 5 - a7 a 5

l Y la- a7asall

Y10- Y 7a5 aaalla 5

y 8 - Y a_ 7 - a7 as/ai7

6 Y 3 a 6 a 6

y(4 Y 6 a_9 a 6 /a 9 -

9 Y 9a14 a 6 a 1 4 "

5.1.3 Selecting the Entering Arc

In order to maintain the optimality of the basis, we must

select an arc k to enter the basis which satisfies the conditions of

5.7.1 and has the smallest marginal change in cost per unit flow

change in the arc k. In order to do this, we must develop the

marginal cost equations. We will first develop the equations which

deal with k e (N1,N2) or k E (N2,N1). After developing these

formulas, we will derive the formulas to calculate the marginal cost

117

for k c (N2 ,N2).

CASE 1: kL is a forward arc and is going to an upper bound or kL is

a mirror arc and is going to a lower bound and kC MA is a forward

arc.

If we let dk be the change in cost per unit flow change in

the arc k(i,j) where k E(NIN as illustrated in Figure 5.9, we

can calculate d as

dk =[+ h)/a y " (5.17)

This formula is used in the subroutines ABSORB and GENER2.

CASE 2: kL is a forward arc and is going to an upper bound or kL is

a mirror arc and is going to a lower bound and ke MA is a mirror

arc*

For arc k£ MA and k < 0 where k e (N2 ,N), as illustrated in

Figure 5.10, we obtain

d-k - [(+ h-k)/a-k - 'Y i"

118

Case 1: Determining the Marginal Arc Cost
Figure S.9

im

II

Case 2: Determining the Marginal Arc Cost
Figure 5.10

L

119

Recalling hk - -hk/ak and a-k I 1/ak in an expanded network,

Sd-k = (Ijak h k -ii)Y i* (5.18)

Equation (5.18) is used in the subroutines ABSORB and GENER2.

CASE 3: kL is a forward arc and is going to a lower bound or kL is

a mirror arc and is going to an upper bound and ke MA is a forward

arc.

The marginal cost for k e(N2,N) per unit flow change in arc

k is

dk" [(Tri+hk-akjJ [-Yiakj
k (ijak hk -Ti)

which is identical to equation (5.18). This is illustrated in Figure

5.11.

CASE 4: k is a forward arc and is going to a lower bound or k is
L L

a mirror arc and is going to an upper bound and ke MA is a mirror

arc.

The formula for the marginal cost for kE (NI,N 2), k < 0, as

ilustrated in Figure 5.12, is

p 1m

120

Case 3: Determining the Marginal Arc Cost
Figure 5.11

iiI

Case 4: Determining the Marginal Arc Cost
Figure 5.12

it

121

dk -k + h - k i _)/ak] [-Yjak]

= ((i + hk)ak - j] Y J

which is the same as equation (5.17).

CASE 5: Arc kP MA and kE (N2,N2).

In this case an admissible arc k(i,j) where ke (N2 ,N 2) forms

a cycle as shown in Figure 5.13. We must insure the new cycle has

a gain different than one. Next we must evaluate the marginal cost

of the path formed with the addition of arc k. The path forms four

parts.

P1 : the path from some junction node 1 to i

P2 : the added arc k

P3 : the path from j to the junction node 1

P4 : the path from to 1.

If one unit of flow starts at node JL' this will require a flow of

at node 1. The flow into node 1 from the circuit P3 must be [B /

(B-)]Y 1 and the flow entering PI from P4 and P3 at node 1 must

be Y/ (- I), by conservation of flow arguments. The flow out of

node j must be 1)/ (- 1)1 Y and the flow out node i is [$ / (B

j2

• .

122

N2

IrI

p4

Case 5: The Entering Arc Forms a Cycle
Figure 5.13

123

0 11 Y~ /ak]1. The cost of the four parts is:

P 4 'JrL -'li 1

1 3 al - 01)1 [Ch Y) /r Y,

- 8'C 8)] rrj- (k' 1. 1)/ 8Yj] Yj/ak.

Adding these four parts and simplifying allows us to write

d k - -1)) [H 'T + h k)/ak -Ti *Y (5.19)

where $- (akYj)/Y .for ke (N2,N2 This is the formula used in

ABSORB and GENER2.2

For admissible mirror arcs, k(j,i) k < 0, the value of dk

becomes

dk T81(a) [' k - h k -T IJY (5.20)

where 0- / (ak Y) for-ke(NM) This is the formula used

in ABSORB and GEMER2.

124

Recall that in section 5.7.1 we outlined four cases which

determined the characteristics of the entering arc. In cases 1 and

4 we needed a flow generating cycle. Using equation (5.16) we may

determine if arc k has a > 1, 8< 1, or$-1 If 8=1, arc k is not

admissible. If arc k has < 1, and the mirror arc k, k < 0, is

admissible, we will calculate the marginal cost for arc k. If arc k

has B > 1 we calculate the marginal cost for arc k, k > 0. The

similar procedure is used for cases 2 and 3 where the entering arc

needs to form a flow absorbing cycle.

Since d k represents the marginal increase in cost per unit

flow change in an admissible arc, we need a dual type iteration to

find the arc with the smallest value of d k- This will be the

entering arc and receive the designation kE. Recalling if MA is

the set of admissible arcs from the expanded network such that

if k(i,j) e: MA either

k E:(N1,IN 2), k E:(N 2 1N1) or kE (N 2 N2).

Then the entering arc is determined by

.. 4 , - . , , . - • . - - - ; - ; . . - - - - - - - - -- • - . . - -

125

PURPOSE: To find :
and arc to enter |
the basis. INITIALIi'

1.(INITIALl) Set FOR 1:-l TO N
node set S(I)-O.If /F
I(L is a mirror arc .Is(I):-o
fini tree rooted at
0(4(L). If not find KL < 0 N
tree rooted at Y\

T(KL). If tree IROOT:- O(-KL) IROOT:-T(KL)
rooted at IROOT
forms a cycle, de- (ROOTG(IROOT LALN, ICCYC)
lete the second re-
ference to node j CYC 1 IN
from LN and delete
KL from LA. FOR L:-2 TO IC+1

2.(INITIALZ) For LN(L) J J
each node in N2, /-
set S(I) - 1. In- // FOR LI:=L TO IC
itialize DL and 1/ I-
XE. II / jLN(Ll):-LN(Ll+l)

IIII iLA(LI-l):-LA(LI)
3.(NEWGAM) Set? for /
root node equal 1. // IC:-IC-l
Compute and assign) //
7's for each node INITIAL2 II --->INITIAL2
in N2.

4.(SEARCH) Start INITIAL2
search through list
of arcs. If k is a S(IROOT):ml
basic arc or an
artificial arc go IC - 0
to 8. Othervise go
to 5. FOR L:-1 TO IC

5.(DECIDE) Set I 1/ JJ:- LN(L+), S(JJ):-l
equal to the origin
node of arc k. If L:- 999999, XE:- 0
k is a forward arc
go to 6, othermise -- > MEWGAN2
go to 7.

Subroutine FIND2G
Figure 5.14

126

6.(FORWARD) If L NEWGI2
is stored as a for-
ward arc and KL is G(IROOT):-l
going to a lower
bound (g(j) < 0), YIC
call GENER2. Other-
vise call ABSORB. FOR L:=1 TO IC
Go to 8.

//K:=LA(L), JJ:=LN(L+l)

7.(IIRROR) If KL is II
stored as a mirror K > 0
arc and going to an //
upper bound (g(i) < / II:-O(K) II:=T(-K)
0), call -ENER2. // G(JJ):-G(1I)*A(K) G(J.):-G(II)/A(-K)
Otherwise call AB-

SORB. Go to 8. -- >SEARCH

8.(COUNT) When all
the arcs have been SEARCH
checked, call
PIVOT1C to pivot K KL ORK--L K
in XE, otherwise go IN

to 4. --- (OUNT H(K) > 99999,/N"

-->OUNT !->DECIDE

DECIDE

I:- O(K), J:- T(K)

J:- T(KL) lI:- T(-KL)

->FONIARD -- >MIRROR

FORWARD

G(XJ)<O 0

-- >COUNT

Subroutine FIND2G
Figure 5.14(cont)

127

MIRROR

Y\G(KI)>O N

j-->COUNT

COUNT

K: -K+l

K-N

_ (PIVOTI I(KL, !) _'->SE ,CH

RETURN

Subroutine FIND2G
Figure 5.14(cont)

128

PURPOSE: To deter- Ai(B)
if arc k is admis-
sible to enter the SEARCH
basis and calculate
the minimum dk S(I)O 00

value. S(J)=O S(J)-O

1.(SZARCH) If arc
k originates in NI K (K)mC(K) N Y ,(K) > 01
(S(I)-O) and term-
inates in N2 (S(I)- -- > -- > -> ->

1), check forward RETURN FORWARD MIRROR RETURN CYCLEI
arc for admissibil-
ity. If admissible
go to 2. If arc k FORWARD
originates in N2
and terminates in D:-(((PI(I)+H(K))/A(K)-PI(J))*G(J), KK:-K
N1, check mirror
arc for admissibil- . .. OMPARE
ity. If admissible

go to 3, otherwise
go to 4. MIRROR

2.(FORWARD) Evalu- : (PI(J)*A(K)-H(K)-PI(I))*G(I), KK:m-K
ate dk for forward
arc and go to 7. -- OWPARE

3.(MIRROR) Evaluate
dk for mirror arc CYCLE1
and go to 7.

ET:-A(K) *G(I) /G(J)
4.(CYCLEl) Compute
gain of cycle by BET-N
inserting forward
arc.If 0 - 1, re- BET > 1
turn. If gain > 1,
test forward arc F(K)< C(K (K) 0 O N
for admissibility.

If admissible,go to BET:=I/BET
5, otherwise re-
turn. Test mirror
arc for admissi- RETURN FWDCYC RETURN MIRCYC RETURN
bility. If admis-

Subroutine ABSORB
Figure 5.15

129

sible, go to 6, FWDCYC

D:-(BEV/(BT-))*(((PI(I)+i(K) /A(K))-PI(J))*
5.(JWDCYC) Compute G(J)
dk for forward arc
that forms a cycle. K
Go to 7. coPa
6.(l4IRCYC) Compute E
dk for mirror arc
that forms a cycle. MIRCYC
Go to 7.

7.(COl4pARE) Test dk
against smallest IUC:--K
found to this
Point. If dk is
smaller, call this COM4PARE
the entering arc.

Return. D < DL

ETURN

Subroutine ABSORB
Figure 5.15(cont)

130

PURPOSE: To deter-

mine if arc k is
admissible to en- SEARCH
ter the basis and -
calculate the Y\ S(I)-0 IN
minimum dk value.

if arc k origi- F(K) - Y (K) > C(K
nates in NI (S(I)
n0) and terminates
in N2 (S(I)-1). If RETURN RETURN FORWARD MIRROR RETURN CYCLE2
so, check mirror
arc for admissibil-
ity. If admissible FORWARD
go to 2, otherwise
return. If arc k :-(((PI(I)+H(K))*A(K)-PI(J))*G(J)
originates in N2
and terminates in IKK:- K
Nl, check forward
arc for admissi- - OMPARE
bility. If ad- / __
missible go to 3,
otherwise return. MIRROR
If arc k goes from
N2 to N2, go to 4*. :-(PI(J)*A(K)-H(K)-PI(I))*G(I)

2.(FORWARD) Evalu- CK:= -K
ate dk for forward
arc. Go to 7. 1--->COHPARE

3. (MIRROR) Evalu-
ate dk for mirror CYCLE2
arc. Go to 7.

CET:-A(K)*G(I) IG(J)4.(CYCLE2) Com- ' ' I"

pute gain caused BET 1,
by adding arc k. If ,,,
cycle gain > 1 and BET > 1
mirror arc is ad-
missible, go to 6. ()>0r K <C/N
If cycle gain is
< I check forward BET:-l/BET
arc for admissib-
ility. If admissi- -> ->
ble go to 5. RETURN MIRCYC RETURN FWDCYC RETURN
Otherwise return. -

Subroutine GENER2
Figure 5.16

131

5.(FWDC¥C) Compute FWDCYC
dk for forward are
that forms a cycle. D:=(BET/(B3T-1))*(((PI(I)+B(K))*A(K)-PI(J))*
Go to 7. G(J)

6.(MIRCYC) Compute X:- K
dk for mirror arc
that forms a cycle. --->COHPARE
Go to 7.

7.(Compare) Test MIRCYC
dk against sall-
est value to this D:-(BET/(BET-1))*(PI(J)*A(K)-(K)-PI(l))*G(I)
point. If dk is
smaller, call this IKK:- -K
arc the entering
arc KE. Return. .-->COKPARE

COMPARU

D < DL

L :-D, IM:- K

PETURN

Subroutine GENER2
Figure 5.16(cont)

132

dk = in {dk}. (5.21)

IE
k MA

This is the formula use in the subroutine COMPARE. It is clear that

dk is non-negative because the process begins with a dual feasible
E

solution.

The concepts developed above are implemented in the

subroutines FIND2G, ABSORB, and GENER2.

5.8 A Basis Change Method

At each iteration subroutine MFLOG2 will determine the arc -

that limits the flow change on the flow augmenting trail(s), and

that arc will leave the basis. Subroutine FIND2G will determine the

entering arc. Arc kE is such that kE E (NI,N 2), kE1 (N2,N2), or kEC

(N2,N1). In the first two cases the subroutine TRECHG [pg 116,(46)]

can be used directly to accomplish the basis change operation for

the PSENG algorithm. However, if k (N2 ,N1), kE must enter as -kE

as TRECHG assumes k E's origin is in the set NI.

In order to update the dual variables, Tr , the set of nodes

and arcs in the tree rooted at JkE is found with the subroutine

ROOTG [pg.247, (46)).

133

PURPOSE: To change
the basis tree by
adding UE and de- CYC:-O
leting KL. Com-
pute new v' vaLues KU > 0
f or new basis.

I:-O(UE), J:-T(UE) I:-T(-UE), J:-O(-KE)

S(i) -0

S(J) -1

KE - -

CROOTG (I jIC _CYCD

UE > 0

II:- 0(UE) ti:T(-UE)

CYC- I

CYCLE(II BETCOST):

1(Il):- COST/(BET-1)

ETURN

Subroutine PIVOTlG
Figure 5.17

134

If kE has formed a cycle, subroutine CYCLE [pg.273, (46)] is

used to calculate the gain of the cycle formed by kE. *The r values

are then updated with the subroutine DUAL [pg.271, (46)]. These

concepts are implemented in the subroutine PIVOT1G.

5.9 The Complete Algorithm

At this point we can state the complete algorithm used in PSENG.

1. Solve the original problem to optimality by

any primal or dual solution technique.

2. Determine the list of candidate arcs and

the list of parametric parameters.

3. Find the flow augmenting trail or trails

which are generated by the candidate arcs.

Determine the arc to leave the basis. If

none exists, go to step 4. If the leaving

arc is a non-basic candidate arc, go to

step 5. Otherwise go to step 6.

4. At least one basic candidate arc can have

its capacity increased without bound

indicating no further parametric changes

I|

135

will affect the basis. Stop.

5. Augment the flow as much as possible on the

trail or trails. Adjust the capacity and

flows on the candidate arcs. Stop, any

futher iterations would cause

infeasibility.

6. Augment the flow as much as possible

through the trail or trails. Adjust the

capacity and flows on the candidate arcs.

7. Find an arc to enter the basis.

8. Change the basis by deleting the leaving

arc and inserting the entering arc. Modify

the dual variables to satisfy complementary

slackness. Return to step 3.

It is important to remember that for any gains algorithm

that the arithmetic is performed with real numbers rather than with

integers. Thus the problem of computer round-off error is quite

likely to occur. The tests for equality must take this into

account. For example in the subroutine ABSORB, the test fk > 0 is

replaced by fk > E ,where e is a small quantity. While the flow

charts presented in this section and in previous sections do not

136

PURPOSE: To imple-
ment the parametric
analysis for a gen- INITIAL
eralized network. FR1 1T

all intial arrays IfXP(I:=O,XX(I):-O,XB(I):inO,XR(I):-O,
and counters to
zero. FOR I:inl TO M

2.(Rememnber) Store IIAH(I):-O,XL(I):-O,PP(I) :-O,RC(I) :-O,
all values from the 1/XK(I):-O,MP(I):-O,XC(I):-O,XF(I):-O,
optimal solution, //P(I):u-O
which allows the
optimal solution to F:-O, ST:-O, MX:-O, ITER:-O
be recovered.

3.(QUESTION) Input REMMBER
list of candidate
arcs and parametric FOR I:in1 TO N
parameters on which I
the parametric an- IIX()-I(I),XR(I):-PR(I),XB(I):-PB(I),
alyuis Is to be / (I:F(I)
accomplished. i(1TP

II (I):F(),XC(I):C(I),H:nil+(F(I)+CL(I))

H(O):-HH, XL(O):wO,MH(O):nOC(O):nO

FOR 1:-l TO XM

I NPUT XK(I), K:-XIC(I),
//I INPUT PP(I),P(K):-PP(I)

Main Program PSENG
Figure 5.18

137

4.(CHECK) Initial- CHECK
ize T's to zero
and node check val- FOR I:=l TO N
ues to zero. For /
each candidate arc -OIK(I):-O
check if the arc is
nonbasic and its IC:-O,CK:-O,Z:-O,ME:-999999,NB:-O,NK:-O
parametric para-
meter is negative. FOR I:=1 TO XM
If so calculate the /
reference number. / XK:-XK(I),ZI:-O(XK),ZJ:-T(XK)
Store smallest re- /
ference number as / PB(ZJ) - XK OR PB(ZI) - -XK
ME. If parametric /.
parameter is neg- / P(XK) 0
ative set IE to the //
terminal node of XK // Ml:-C(XK)/-P(XK) F(K) - 0
otherwise let IE be /
the origin node. // P:-P(XK),IE:-T(XK) P:-P(XK),IE-O(XK)"
Call PATH which / JE:-O(XK),KE:--XK JE:-T(XK),KE:-XK
will create LA,LN, /
and RC lists for /M < ME
all flow augment- /1
ing trails created // ME:-M1,NK:-XK
by the nonbasic /.
candidate arcs. If / IJ:-IE, MULT:-l
no cycles are found //
(z-0) go to 5. I/ PATH(IJ,MULT,LN,LA,RCCK)
Otherwise call //

CYCLEG to update / IJ:-JE,MULT:--l
T's for affects /

of the cycle. / (PATHF(IJ,MULT,LN,LAC,CK)

Z 0O
(CYCL-EG

->AUMENT

Main Program PSENG
Figure 5.18(cont)

138

5.(AUGMENT) Call AUGMENT
MFLOG2 to' deter-
mine the maximum ITER:-ITER+1, HPI'.HE
reference number
for the basic arcs. MFLOG2(IC,KL,IIP)
If no basic arc can
be found to leave Y\KL - 0 I
the basis, call =z_
COMPLETE and re- (COMPLETE(MV IX) CUPATHf
turn to MAIN MENU.
Otherwise call UP- ST - IST
DATE to change arc
flows and candidate (RESET
arc capacities. If
in update a stop- - MAIN MENU ->MAIN MENU --- >CHECK
ping condition is
reached (st-i),
call RESET and re-
turn to MAIN MENU.
Otherwise go to 4.

Main Program PSENG
Figure 5.18(cont)

139

PURPOSE: To update QUPDATEJMFKL))

flows and capacit-
ies on candidate I "
arcs and to update HP - 0
flows on appropri- -___

ate basic arcs. IC" 0
Also to find KE to
enter basis, and FLOWG(LALN, IC,MF)
to print out in-
termediate results. FOR I:-l TO XH'I
If MF - 0, this is I XK:-XK(I),ZI:=O(XK),ZJ:-T(XK),
a degenerate iter- II C(XK):=C(XK)+MF*PP(I)
ation. Otherwise If
update flows for / PB(ZJ)-XK OR PB(ZI)--XK
the basic arcs I1
found in LA. Up- I/ F(XK)-O AND P(XK) > 0
date the flows and II
capacities for the // F(XK):=F(XK)+MF*PP(I)
candidate arcs. -
Then print itera- PRINTI(XK(I),PP(I),CL(I),C(I),F(I),H(I))D
tion results. Call
FIND2G to determine
KE, the entering
arc. If a stopping ST-i N
condition has been
found call PRINT2 EPRINT2(IAH I)XL1IMF(I
to print final re-
sults, otherwise RETURN
return.

Subroutine UPDATE
Figure 5.19

140

PURPOSE: Final up- (COHPLETE(HF.I.X4))
date of flows on
basic arcs and to
update capacities \ My - 99999 IN
on candidate arcs.
Print final iter- (nOwG(LALN, IC,KLILC1F))
ation results and
suamary table. FOR I:-I TO XM

II XK:-XK(I),Z:-O(XK),ZJ:-T(XK)
-/ C(XK):-C(XK) + MF*PP(I)

Note: If HF /
99999, a basic arc // PB ZJ)aK OR PB ZI)--XK
can have its cap- /I F(XK):=F(XK) + HF*PP(I)
acity increased!
vithout bound. KL - 0

XL: -NK

(PRINTI(XK.PP(I) CL(I) C(I).F(I) ,H())-

('PRINT2(IA 1(I),XL Hi)_F(I) I)

fTURN

Subroutine COMPLETE
Figure 5.20

141

reflect such adjustments, these adjustments do appear in the

computer implementation of PSENG. The concepts presented above are

implemented in the algorithm PSENG.

Figure 5.21 presents an example application of the algorithm

PSENG. Figure 5.21(a) lists all the initial parameters of the

problem and Figure 5.21(b) showe the optimal basic feasible solution

derived by a primal solution method. In each of the Figures 5.21(c)

through 5.21(h), the entering arc is indicated by a dashed line and

the leaving arc is marked by an X. The basic arcs are indicated by -

heavy lines and the non-basic arcs at capacity by light lines. The

dashed-dnt lines indicate non-basic candidate arcs with flows at

capacity. The flow and capacity at the completion of each basis

change and the resulting total cost of those f lowe are also given at

each step.

The candidate arc list and their respective parametric

parameters are listed below

X [5,6,7,11,14,15,201

P -[-.3,1.2,-2.1,-.6667,.1,-3,1.41.

In Figure 5.2 1(c) candidate arc 20 creates two flow augmenting

paths. The values of the Y's are computed in PATH, and MFLOWG2

calculates a reference number of 1.10. Arc 2 is forced to leave the

- - - -. -.- to . -

142

Sea))
3 Fie .21220 1

6 021

4 (2.02) 9 F iiF

(a)
Example of PSENG
Figure S.21nt

143

F7ur 5.2(ot

Figur S .2 (ot

144

1 (8,S Ce (810

20

(e)
Example of PSENG
Figure 5.21(cont)

145

(6,Figu3 S1121(0.2)t1

2 is)

Exml ofPSN

Figure
a. (nt

146

22 (i 75 CC)

Exapl ofPSN
(8Figure 1.21(2,2)

147

basis at its upper bound. The subroutine UPDATE calls FIND2G which

determines the entering arc, kE -3, and updates the flows and

capacities on the candidate arcs and the flows on the basic arcs on

the flow augmenting trails.

Figure 5.21(f) shows four augmenting trails: two generated

by non-basic candidate arc 14 and two generated by non-basic

candidate arc 15. Figure 5.21(h) shows a cycle which is formed when

arc 12 enters the basis. The algorithm terminates when the flow and

capacity of candidate arc 15 are driven to zero. This is shown in

Figure 5.21(j).

Table 5.2 summarizes the results of the algorithm. Figure

5.22 illustrates that a parametric analysis on the capacities of a

network produces a piecewise-linear and convex function. It is

interesting to note that the objective function decreases until the

third iteration, when the objective function begins to increase.

5.10 Extensions to Node External Flows

In sections 5.2 through 5.9 we examined the effects of

parametric analysis on the arc capacity vector. In the context of

linear programming, we have only analyzed the upper bound part of

the right-hand side vector. We can easily extend the results of

sections 5.2 through 5.9 to accommodate the effects of changing the

148

ITERATION OBJECTIVE LIMITING CUMULATIVE
NUMBER FUNCTION ARC REFERENCE

VALUE NUMBER

0 132.400 - -

1 126.076 02 1.096
2 124.339 14 1.538
3 124.060 15 2.530
4 128.009 22 2.798
S 128.009 17 2.798
6 133.606 12 2.847
7 170.585 18 3.792 L
8 180.188 15 4.000

L

-L .. ,

Summary Table of PSENG Example Problem
Table 5.2

149

I80

170

160

150

Z 140

130

1 2 3 4
Cimmiative Reference Nember

Optimal Objective Function Value as a Funmction of the
Cumulative Reference Number

Figure S.22

150

supply and demand values expressed by the right-hand side vector b.

While previously we focused our attention on changing arc

capacities, we will now show how to extend the PATH subroutine to

take into consideration changes in the external flow.

Because PATH starts at a node and traces the flow augmenting

path back to the root node or a root cycle, we merely need to

designate a parametric parameter for each node at which the external

flow is to be changed. Then PATH will determine the 'Y 's for each

node generated by these flow augmenting trails. Subroutine MFLOWG2

will determine the limiting arc. We then need only determine the

entering arc in FIND2G. We continue this process until any further

chaniges will cause the problem to become infeasible or the current

basis will remain optimal for any further changes.

CHAPTER 6

APPLICATIONS OF PARAMETRIC SENSITIVITY ANALYSIS

6.1 Introduction

In this chapter we develop two dual incremental algorithms

which use the concepts of parametric analysis developed in Chapter

5. The first algorithm is called PARARC which uses parametric

analysis on arc capacities. The second algorithm is called PARANDE

which uses parametric analysis on node external flows. The

computational efficiency of PARARC and PARANDE are compared against

a dual-incremental code called INCREMG (46) and two primal codes,

NETG (38) and PGAINS (46). Lastly we discuss applications of

parametric analysis to other classes of problems.

6.2 Parametric Arc Incremental Flow Algorithm

Given a network with arcs having capacity, cost, and gain

parameters with source and destination nodes defined and with a

required quantity of flow specified at the sources and destinations,

our problem is to determine the arc flows with minimum total cost.

151

152

The problem can be stated as

m

Min Z hkfk (6.1)
k=1

S.T. - E akfk + Z fk - bi for all ieN-s (6.2)
k E: ri k E: Moi

0 < fk < ck kE M . (6.3)

The parametric arc incremental algorithm is a dual-node infeasible

approach applied to a special network. The network has a single

super-sink (node t) and a single super-source (node s).

For each source node an arc is created from the super-source

to the source node with capacity equal to bi . For each destination

node an arc is creat-d from the destination node to the super-sink

with capacity equal to -big We let the expanded arc set which is

created be denoted as M: We can redefine the primal problem as

m
Min E hkfk (6.4)

k-I

S.T. - E akfk + Z fk = 0 i-l,...,n is,t(6.5)
k e MTi kE Moi

- Z akfk + Z fk ' - Ft (6.6)

0< fk ck kEM'. (6.7)

153

Here Ft is the sum of the destination demands. An assignment of

flows that satisfy (6.5) and (6.7) will be called F. An F which

satisfies (6.4) for some value of flow at the sink less than F twill

be called an intermediate optimum. The flow F that satisfies

(6.4-6.7) is called the optimum.

To solve this problem using the parametric approach of

Chapter 5, we identify the arcs from the destination nodes to the

super-sink as candidate arcs with parametric parameters equal to the

demand at the destination. We then increase the candidate arc

capacities from zero until they reach a capacity equal to the

original destination demands. This creates multiple flow augmenting

paths. at each iteration and allows flows to .be augmented from the

super-source to the super-sink.

Thus we begin with an intermediate optimum F 0 for some value

of output flow at the super-sink. Next we obtain a shortest path

0network D , that determines for each node the minimum cost per unit
S

of additional flow to the node and the path over which the flow may

be obtained. The output flow is increased in DS0along the flow

augmenting trails generated by the candidate arcs until one or more

arcs in the trails become capacitated. This flow augments F0 to

become F1V Then F 1 is the intermediate optimum. A new augmenting

network is constructed, D , and the output flow is again augmented

to obtain F2 The process continues until the flow at the

-*

154

super-sink equals Ft.* At every step F k is an intermediate optimum;

therefore at the termination the flow pattern must be at the

optimum.

The general steps of the algorithm are as follows:

1. Find an initial least cost spanning tree.

2. If the flow at the super-sink is Fty stop
with the optimal solution.

3. For each candidate arc find the flow
augmenting trails which include the basic
arcs. Determine the maximum allowable flow
increment which will occur on one of the
trails. Determine the leaving arc.
Augment the flows.

4. Find an arc to enter the basis. If none
exists, stop. There is no feasible
solution. Otherwise go to 5.

5. Change the basis by deleting the leaving
arc and inserting the entering arc. Modify
the dual variables to satisfy complementary
slackness. Return to step 2.

We nov will develop the detailed steps of the algorithm.

6.2.1 Obtaining the Initial Basis Tree

In order to apply the concepts developed in Chapter 5, we

must modify how the network is to be represented. Consider the

sample network problem shown in Figure 6.1. We will create a

L " - - .. .= U EIC " " U "-I-I'=
'

..7

155

trnal flow, slack externalifl1w

SapePARARC Problem !

Ia Owl

Figure 6.1I

jj 3 b4 b5 j

The Augmented Network
Figure 6.2

156

super-sink node, which will have a fixed external flow equal to the

sum of the destination fixed external flows. We also will create

"candidate arcs" from the destination(s) to the super-sink with the

following parameters:

ck = 0 (capacity)

hk - M + I (cost)

Pk - {bi I o(k)]} (parametric parameter)

ak 1 (gain).

We will also create arcs from the slack node to all nodes with slack

external flows with the arc parameters

k bsi

hk -0

Pk

Finally we create an artificial arc from the slack node to the

super-sink with parameters

f k -Ft

157

• - ck = -F t . .
k t

hkmM

ak= 1

Pk 0 .

Since PSENG requires conservation of flow at all nodes, an

artificial arc is required to obtain conservation of flow at the

super-sink. When the flow on the artificial arc goes to zero, the

flow through the network will be F . All of these transformations

are accomplished in the subroutines READGI and ORIGSGI.

Once the transformed network is obtained, we use Dijkstra's

algorithm adapted for the generalized network, as documented in

[46,page 283], to obtain an initial basic feasible solution. The

subroutine TREINT (46,page 121] is used to initialize the parameters

of the basis tree. Since a generalized network flow problem may

have arc gains greater than one or have negative arc costs,

Dijkstra's algorithm may not provide an optimal shortest path tree.

Therefore, we now use the algorithm PSHRTG [46,page 2851 to find the

initial least-cost spanning tree. Once this tree is found we reset

the costs on the "candidate arcs" to be zero. This is illustrated

in Figure 6.3. We reset these costs so when the candidate arc flows

increase from zero to the former external flows of the original

destination nodes, the total cost for the solution will reflect the

P

158

(h.,b5u.I10

TheExtirial Basis

Figure 6.3

159

actual cost for the problem. At this point we have an initial

optimal (all dk> 0), basic, infeasible (the artificial arc has flow

> 0) solution.

6.2.2 Determining the Arc to Leave the Basis

Similarly as in PSENG, we now use the PATH subroutine to

determine the flow augmenting trails for each candidate arc. This

will create a list of a-:, (LISA), a list of nodes (LISN), and a

list of gamma values (G). Using these lists MFLOG [46,page 266]

will determine the maximum flow change or reference number on these

trails and the limiting arc. We will denote the limiting arc as kL .

6.2.3 Determining the Entering Arc

We use the subroutine FINDARC to determine the entering arc,

kE. If no arc can be found to enter the basis at this iteration, no

feasible solution exists to the proposed problem.

6.2.4 Changing the Basis

Updating of the basis tree representation and the dual

variables is accomplished in the subroutine PIVOTIG.

~1

160

ai

6.2.5 The Complete Algorithm

We can now give a complete statement of the parametric arc

incremental algorithm.

1. Use a variant of Dijksta's shortest path

algorithm to find the initial least-cost

spanning tree. Use the arcs in the :

spanning tree to define a set of node

labels i i such that 1s M 0 and rj = (r.

+ hk) / ak for all arcs k(i,j)e MT.

2. Use a triple labeling scheme to label and

store the least-cost spanning tree.

3. If the flow on the artificial arc from the

super-source to the super-sink node is

zero, stop with the optimal solution.

4. For each candidate arc from a destination

node to the super-sink, find the augmenting

trails which include the candidate arcs and

161

the basic arcs. Determine the maximum

allowable flow increment on these trails.

p Determine the arc on these trails which is

at capacity and designate it the leaving

arc k.L. Augment the flows.

5. Delete arc k Lfrom the spanning tree,

partitioning the network into two subtrees

defined by the sets N and N Search the
1 N2.

set of admissible arcs originating or

terminating in N1 which connect to the set

N 2 or the admissible arcs that originate

and terminate in N 2. If no admissible arc

exists, stop; there is no feasible

solution. Otherwise select the arc with

the minimum dk and designate it as the

entering arc kE

6. Perform a basis change which determines the

new least-cost spanning tree. The basis

change is accomplished by deleting k L and

adding kE. Update the dual variables and

return to step 2.

162

The algorithm PARARC implements these concepts* The flow charts for

the FORTRAN coding of this algorithm can be found in Appendix 1.

Figure 6.4 presents an example application of the algorithm

PARARC. Figure 6.4(a) shows the initial problem data. Figure

6.4(b) illustrates the intermediate transformation which creates the

four candidate arcs from the original destinations to the super-sink

and the creation of the artificial arc from the slack node to the
L

super-sink.

In each of the Figures 6.4(c) through 6.4(k) the entering

arc is indicated by a dashed line and the leaving arc by an X. The

basic arcs are indicated by heavy lines and the nonbasic arcs at

capacity by light lines. The dashed-dot lines indicate the

non-basic candidate arcs. The flow and capacity at the completion

of each basis change are given at each step.

Figure 6.4(c) shows the initial least-cost spanning tree

derived from a variant of Dijstra's algorithm. Figures 6.4(d)

through 6.4(j) show the intermediate steps in the solution process

as the flow on the artificial arc is being decreased. It is

interesting to note at each intermediate iteration, we are

increasing the flows on multiple flow augmenting paths, rather than

a single path as in the usual flow augmentation approach (46).

FII~wz~~. -..-;

163

[ioi999,0 1 6 207 30

8 [401

(a)
Example Application of PARARC Algorithm

Figure 6.4

(100.0.1)
20

4 l T -1ool

(b)
Example Application of PARARC Algorithm

Figure 6.4(cont)

164 --

(100,100)

2 90

Cd))

Exml Aplcto of TAACAloih

Fiur 6.(c9t

165

(49.96,100)

1Ko 6

40T

s* 4

Ko1E 51oA

(e)
Example Applicationi of PARARC Algorithm

Figure 6.4(cont)

166

(32.77.100)

4 T

0 I

0

ifk

(g)
Example Application of PARARC Algorithm

Figure 6.4(cont)

(2,10

167

KI.Si106

20(O

0

7
55

1T

Example Application of PARARC Algorithm
Figure 6.4(cont)

11.82,100

168 -

k)

Example~~~~~ AliainoPARClgoh
Figure .4(c0ni

169

Figure 6.4(k) shows the optimal solution as the flow on the

artificial arc is reduced to zero.

6.3 Parametric Node Incremental Flow Algorithm

Given a network with arcs having capacity, cost and gain

parameters, with source and destination nodes defined, and required

quantities of flow specified for each source node and destination

node, the problem is to determine the arc flows with the minimum

total cost. The flows must satisfy the conservation of flow except

at the super-source. While the flows into each destination must

equal the required values, the super-source may supply any amount of

flow. The problem may be stated

m
Min E hkfk (6.8)

k=1

S.T. - E a + = bi for i N-s (6.9)
kNMTi k Moi

0 < fk < Ck " (6.10)

The parametric node incremental algorithm is a dual-node-infeasible

approach applied to a specialized network. The specialized network

has a single source, but perhaps multiple destination nodes

170

We can define an intermediate primal problem as follows:

m

Min Z hkf k (6.11)
k I

" bi1
S.T. - Z akfk + z f bi for i N-s (6.12)

kE MTi kE Moi

0 < fk ck kEM (6.13)

where bli < bi for i EN - 1. An intermediate optimum is a flow

F1 and node potentials ni that are an optimum solution to the above

primal problem and its associated dual.

The general approach begins with an intermediate optimum F0

for some value of output flow at each of the sinks. Next a shortest

path network is constructed, D s, that determines for each node the

minimum cost per unit of additional flow to the sink nodes and the

path over which that flow may be obtained. The output flow at each

0
destination node is increased parametrically in Ds along the

minimum cost trails defined to all the destinations until an arc

becomes capacitated. This flow augments F0 to F1 . F1 is also an

intermediate optimum. A new augmenting network is constructed, D a
5

and the output flow is again augmented to obtain F2 , This process

continues iteratively until the desired output flows at the

destination nodes are met.

171

Throughout the algorithm because the values ofr 'r are

determined by a shortest path algorithm, the solution will remain

dual feasible. The solution is always basic as at most n-1 arcs

will have flows strictly between their bounds, and these arcs will

form a basis network. The solution will satisfy conservation of

flow and complementary slackness. The one requirement that is

violated until the final iteration is the requirement for the flow

at each of the destination nodes to be satisfied. These flows start

at zero and iteratively increase until they reach their required

values. At this point the algorithm stops with the optimum

solution. The algorithm has the following basic steps:

1. Find an initial least-cost spanning tree.

2. If all sink external flows are met, stop
with the optimal solution.

3. For each sink node, find the flow
augmenting trail. Parametrically increase
the flow on all trails. Determine the
maximum allowable flow increment and
determine the arc to leave the network.

4. Find an arc to enter the network. If none
exists, stop. There is no feasible
solution.

5. Change the basis by deleting the leaving
arc and inserting the entering arc. Modify
the dual variables to satisfy complementary
slackness. Return to step 2.

172

Again before stating the algorithm in complete detail, each step of

the outline will be discussed.

6.3.1 Obtaining the Initial Basis Tree

In order to apply the concepts developed above and the ones

presented in Chapter 5, we need to modify the network as presented.

Consider the sample network shown in Figure 6.5. We create a

super-source and arcs from the super-source to each source node with

parameters:

ck bsi

hk~
ak = 1

This transformation is accomplished by the subroutines READNDE and

ORIGSG. The revised network is presented in Figure 6.6. Once the

transformed network is obtained, we use a generalized Dijstra's

algorithm as documented in (46,page 2831 to obtain in initial basic

solution. We then use the subroutine TREINT [46,page 121] to

initialize the parameters of the basis tree. Since a generalized

network problem may have arc gains greater than one or have negative

173

Ecuerml Fow,Slack ExternalFew

Sample PARANDE Problem
Figure 6.5

[Eternal flow]

The Augmented Network
Figure 6.6

174

arc costs, Dijkstra's algorithm may not provide an optimal shortest

path tree. Therefore, we now use the algorithm PSHRTG [46,page 285]

to find the initial least-cost spanning tree. At this point we have

an initial optimal (all di > 0), basic, node infeasible solution to

the original problem.

6.3.2 Determining the Arc to Leave the Basis

As in PSENG, we now use the PATH subroutine to determine the

flow augmenting paths. In this case, however, the candidate list

contains node numbers, and the node parametric parameters are the

negative of the respective destination node external flows. For

each destination node we find the flow augmenting trail. This will

create a list of arcs (LISA), a list of nodes (LISN), and a gamma

list (G). Using these lists, the subroutine MFLOWG [46,page 266]

will determine the maximum flow change or reference number on these

trails and the limiting arc k.L

At each iteration we keep a record of the cumulative

reference number. This is merely the sum of the reference numbers

to this iteration. It is possible that the reference number found

for a given iteration, i, when added to the cumulative reference
L -

number from the previous iteration i-1, will be greater than 1.

This means a reference number of (1 - cumulative reference number)

- -: -.-I - - "- - - - . . . '2 -

175

will cause the unsatisfied external flows to be satisfied exactly.

At this point we would augment the flows and terminate with the

optimal solution.

6.3.3 Determining the Arc to Enter the Basis

We use the subroutine FINDNDE to determine the entering arc

k E. If no arc can be found to enter the basis, no feasible solution

exists to the proposed problem.

6.3.4 Changing the Basis

Updating the basis tree representation and the dual

variables is accomplished by the subroutine PIVOTIG.

6.3.5 The Complete Algorithm

We can now give a complete statement of the parametric node

incremental algorithm.

1. Initialize all flows to zero.

176

2. Use a variant of Dijstra's shortest path

algorithm to find the initial least-cost

spanning tree. Use the arcs in the

spanning tree to define a set of node

labels Ti such that is 0 and Tr (jir

+ hk) / ak for all arcs k(i,J)E M.

3. Use a triple labeling scheme to label and

store the least cost spanning tree.

4. If the cumulative reference number (CUMRNO)

equals 1.0, stop with the optimal solution.

5. For each demand node find the flow

augmenting trail. Determine the maximum

reference number, HF, on these trails. If

the maximum HF is such that the CUHRNO + HF

> 1, set MF - 1 - CUMRNO and terminate the

algorithm after this step. Determine the

arc on these trails which is at capacity

and designate it the leaving arc kL.

Augment tLe flows.

177

6. Delete the arc kL from the basis tree,

partitioning the network into two subtrees

defined by the set N and the set N2.

Search for an admissible arc that

originates or terminates in N1 and connects

to the set N2, or an admissible arc that

originates and terminates in N2. If no

such arc exists, stop; there is no feasible

solution to the problem. Otherwise select

the arc with the minimum dk and designate

it as the entering arc k. .

7. Perform a basis change which determines the

new least-cost spanning tree. The basis

change is accomplished by deleting kL and

adding kE. Update the dual variables and

return to step 4.

The algorithm PARANDE implements these steps. The flow charts for

the FORTRAN coding of the algorithm can be found in Appendix 2.

Figure 6.7 presents an example application of the algorithm

PARANDE. Figure 6.7(a) shows the original problem data. In each of

178

the Figures 6.7(b) through 6.7(h), the entering arc is indicated by

a dashed-dot line, the leaving arc by an X, the basic arcs by solid

lines and the nonbasic arcs at capacity by dashed lines. The

unsatisfied external flows are also shown at each step. Figures

6.7(b) through 6.7(g) show the intermediate steps in the solution

process. In Figure 6.7(g) no leaving arc is shown, as the.maximum

flow augmentation found is greater than the maximum flow

augmentation necessary to satisfy the external flows. The algorithm

terminates at this point and the optimal solution is shown in Figure

6.7(h).

6.4 Computational Analysis of PARARC and PARANDE

To demonstrate the feasibility of using parametric analysis

for incremental flow algorithms, PARARC and PARANDE were tested

against their immediate predecessor INCREMG (46,page 314]. INCREMG,

in contrast to the parametric approach, only augments flow along a

single flow augmenting path. In the parametric approach flow is

increased in multiple flow augmenting paths. The computations were

conducted to determine if these new algorithms would be more

efficient than INCREMG. The cumputational times were also compared

against two primal codes, NETG (38) and PGAINS (46). We should note

that both PGAINS and INCREMG are modular and pedagogical in design,

179

(k, a k)

[bi.bsiJhsiJ

[o~oo~o ,~3

[0.999.0 2 7 [15]

(a)
Example Application of PAMA'D Izgorithm

Figure 6.7

Onbsatisfied bi)

fk(b3

ExapleAppictio ~i PAANE Agorth

F i u r 4 . (o t

RD-R145 558 PARAMETRIC ANALYSIS FOR GENERALIZED NETWORK FLOW 3/3
PROBLEMS(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB
OH M E BAUM MAY 84 AFITCI/NR-84-38D

UNCLASSIFIED F/G 12/1i N

OE

-2

--. 1j LjjJ LE

%U
L i no

.

-w.w

L =8tl'1.51 1.4

I:

"
o w

MICROCOPY RESOLUTION TEST CHART i
"AlOSA I U. OF S1ANOARS-1963-A

. .- 6.

. . . .t

180

(ussatistied b,)

4--

(c)
Example Application of PARANDE Algorithm

Figure 6.7(cont) *

(Uuuatluf led bj)

3a i'

fkd

ExapleAplictio o PAAND Agorth

Figur 6.7con R

181

(Unsaisf ed b 1)

f(f
ExmpeApliaio o ARND lgri3

4iue6.(ot

182

(U1satisfied b1)

32.43

8- 4

414

(h)
Example Application of PARANDE Algorithm

Figure 6.7(cont)

[0,367]

[3Figure [0,.75]nt

., - ,, - ~ I , . , ~ ~ - ~ ~ * ~ .* , p .4

183

and this may influence the computational times recoreded.

A set of 20 test problems (see Table 6.1) included in the

computational analysis were generated by a random-network generator

NETGNG. While NETGNG has no specific reference, it is in use by the

Center for Cybernetic Studies at The University of Texas at Austin.

NETGNG's immediate predecessor for pure networks is NETGEN (53).

NETGEN, as part of its procedure, builds a skeleton network

connecting sources to sinks. Capacities are assigned to all

skeleton branches to assure the existance of a feasible solution

which uses all supplies and wets all demands. The sum of supplies

equals the demand. Nonskeleton branches are then randomly

generated. The primary modification to this procedure, used by

NETGNG, for networks with gains is also to assign nonskeleton

branches a gain parameter randomly selected from a specific range.

The skeleton branches are given unity gains. This guarantees the

existance of a feasible solution.

The problem set includes 10 transportation and 10

transshipment networks. The number of nodes varies from 60 to 100

and the number of arcs from 100 to 600. The cost on the arcs ranges

between 1 and 100. All problems have 1002 capacitated arcs, with

minimum lower bound of 5 and maximum upper bound of 10. Arc gains

range between 0.5 and 1.5. All problems were generated by using a

seed of 12345678 and 80% of the arcs were assigned the highest

184

A nL nL nL nL nLnL nL nL A0mL

41

ro0 L4

0

-- o<oooeooeoe

4J Ln a n a a a a 0 a a 0 0 0 Q an a a a a a

0 OOOOOOOOOOO

4Ja0 0 W OOOt- r- Ole 0 0O
.. 4-

44)0

z-

* 0

944 0 0 CocoOOOOOOO
'4. 0 - U, L'Zq O L ' -4

2 V" "-I
0. z

185
I

possible cost.

The five algorithms were run on a Cyber 170/750A computer at

The University of Texas at Austin. All codes were tested on FTN4

(OPT - 2) compiler. Tables 6.2 and 6.3 display the results from

NETG, PGAINS, INCREMG, PARARC, and PARANDE. All solution times

include only the time to optimize the problem excluding times to

input the data and output the results.

It can be concluded based on the limited sample results

shown in Tables 6.2 and 6.3 that both primal codes completely

dominated the dual-incremental codes by between two to five times.

However, PARANDE is more efficient than either PARARC or INCREMG.

For the 10 transportation problems PARANDE is 1.41 times faster than

PARARC and 1.67 times faster than INCREMG. For the 10 transshipment

problems PARANDE is 1.27 times faster than PARARC and 1.67 times

faster than INCREMG. Overall PARANDE is 1.31 times faster than -" -

PARARC and 1.67 times faster than INCREMG.

It can also be concluded that PARARC is more efficient than

INCREMG. For the transportation problems PARARC is 1.18 times

faster than INCREMG and for the transshipment problems PARARC is

1.31 times faster than INCREMG. Overall PARARC is 1.27 times faster

than INCREMG.

The major objective of this computational study was to

demonstrate the feasibility of applying parametric analysis to

I

IL
186

PRIMAL METHODS DUAL METHODS ______

Problem NETG PGAINS INCREMG PAMARC PARANDE Obj ective
Number __________Function

1 0.316 0.968 1.032 0.958 0.622 844765.0

2 0.960 1.42S 1.966 2.087 1.383 743281.6

3 0.942 1.587 3.863 3.965 2.697 801090.7

4 0.657 1.761 4.155 3.931 2.635 840359.3

5 1.043 1.811 5.157 4.717 4.125 746985.6

6 0.632 2.029 6.183 5.542 3.74S 812475.3

7 1.260 2.594 10.682 8.066 5.487 757218.0

8 0.131 0.564 0.670 0.687 0.487 831556.8

9 0.565 1.138 3.881 3.151 2.289 715154.7

10 0.693 1.507 4.775 2.689 1.866 743944.5

Solution Times for the Transportation Problems
Table 6.2

187

PRIMAL METHODS DUAL METHODS
Problem NETG PGAINS INCREMG PAIR.RC PARAWDE Obj ective

Number Function

11 0.453 1.146 4.738 4.664 3.666 2357360.3

12 0.828 1.449 7.096 5.408 4.276 2085017.7 -

13 0.936 1.812 10.432 7.243 S.662 2203213.5

14 1.516 2.310 18.143 13.394 10.959 2082679.7

15 0.915 1.296 5.068 5.471 4.223 2230957.7

16 0.913 1.587 8.100 7.072 5.655 2473342.4

17 1.143 2.929 15.195 9.785 7.746 2117899.7

18 0.969 1.886 8.440 6.375 4.696 2055368.9

19 0.986 2.139 12.480 10.116 7.698 1951960.6

20 1.616 2.925 21.410 15.285 12.053 2169286.6

Solution Times for the Transshipment Problems

Table 6.3

188

dual-incremental methods. While the codes tested were not as

efficient as primal codes, they were considerably more efficient

than the previous generation of dual-incremental codes. This does

indicate an area of promising research which will be discussed in

Chapter 7.

6.5 Other Applications of Parametric Analysis

In this section we will describe four additional problem

classes where parametric sensitivity analysis for generalized

networks might be applied, with what we feel would be with a great

deal of success.

The first is the cash management problem (9) which is

concerned with optimally financing net cash outflows and investing

net cash inflows of a firm while simultaneously determining payment

schedules for incurred liabilities. This could be formulated as a

multi-period transshipment model with m "warehouses" corresponding

to different sources of cash (cash sales, short-term securities,

lines of credit, etc.) and the n "markets" corresponding to

different uses of cash (payments on accounts, notes payable, etc.).

Cash could be both a source and a use, thus allowing transshipments

across periods. Yields on securities, interest rates on loans, and

discounts constitute unit costs of the problem. While the model

189

takes into account payment schedules, financing and security

transacti.ons, it ignores the important problem of determining the

minimum balance. Cash deposits in excess of some absolute minimum

cash balance requirement prove valuable since they improve the

firm's credit rating and the bank's goodwill. But deposits also

mean lost revenue from alternative investments in securities. Thus

the manager would like to know the effect on the optimum total cost

from maintaining different levels of cash balance, so as to arrive

at a subjective decision regarding its magnitude. This can be

easily accomplished by parametric analysis of the cash-balance

(external flows).

A second major area is the multi-period multi-region

capacity expansion problem. Balachandran, et al. (9), describe this

problem. A product can be manufactured in m regions and is required

by n markets for each of the periods K - {1,2,...,T). We know that

the initial demand and the demand in a market can be satisfied by

production and shipment from any region but must be met exactly

during each time period (no backlogging or inventorying).

Balachandran notes that each period is a transportation problem, and

the prcblem for period t differs from the problem in period t-1 by

only the right-hand side constraints. Thus we can iteratively solve

the problem. Starting in period 1 and using the solution from

period 1, we use parametric analysis to get the solution for period

190

2. We can continue in a like manner to get the solution for period

T.

A third major area would be in the area of branch-and-bound

algorithms. It often happens that the subproblems are generalized

network flow problems. Consequently, as we move along the

branch-and-bound tree, we may obtain the optimal solution to the

(k+l)st subproblem by post-optimization of the kth subproblem,

rather than inefficiently having to solve the (k+l)st problem from

the start. Some of the potential areas within branch-and-bound

might deal with optimal facility locati3n, assignment of sources to

users, lock-box decision models, or the one-machine job scheduling

problem.

A final area where this method might make solution methods

more efficient is in the area of stochastic network flow problems

with recourse (45). In this problem one really has a master problem

and a series of subproblems. Each of the subproblems is a network

where the right-hand side is being varied at each iteration. It

seems that the parametric sensitivity algorithm would be of value to

solve these types of problems, as the solution for iteration k could

be used to start iteration k+l by just varying the capacity

constraints.

While the four example application areas do not exhaust the

potential areas of applications for the parametric analysis method

191

for generalized networks, we hope that these examples may spur

further applications along these lines.

L

CHAPTER 7

CONCLUSIONS AND RECOMENDATIONS

7.1 Summary

In a deterministic generalized network after the initial

model is constructed, the operations research scientist must still

gather the data to completely fill in the parameters of the model.

The uncertainty and inaccuracy of the initial data collection is

well documented. When the operations research scientist has

presented these results to management, the scientist has many times

met with failure because management challenges the original problem

data. The real strength of linear programming has been that the

operations research scientist has been able to use sensitivity

analysis or parametric programming to perturb the initial problem

data to answer management's "what if" questions.

A logical extension of parametric programming of linear

programs would be to apply these well known concepts to a

generalized network format. The goal of this research was to

develop the individual algorithms to accomplish this both by

parametric analysis for a capacity vector, as well as parametric

analysis of the right-hand side or external flow vector. In order

192

193

to accomplish this goal, an algorithm to determine the flow

augmenting trails (TRAIL2), an algorithm to determine the maximum

flow augmentation possible (MFLOG2), an algorithm to determine the

entering arc (FIND2G), and finally an algorithm to change the basis

(PIVOTIG) were developed.

A computer package was developed which integrated these

algorithms with a report generator. The report allows the manager

to see the optimal flows at each iteration and examine how the total

cost varies with each basis change.

An outgrowth of this research has been the development of

two new variants of a dual-incremental flow approach to the

generalized network flow problem.

7.2 Contributions

As described in Chapter 2, much work historically has been

spent on parametric programming for linear programs. This is in

contrast to a lack of significant work in the area of parametric

programming for the generalized network flow problem. There are two

major contributions of this research. First, the methods developed

in this study have not been seen before in the literature and they

are a significant tool for the practical operations research

analyst. The methods allow the analyst to perturb an initial

194

uncertain data set to analyze how these perturbations will effect

recommendations to management. The computer code developed allows

the analyst to present a graphical report on how the objective

function varies as the parameters are varied. This leads to an easy

visualization of how much to vary the parameters or how much the

parameters may be varied before an adverse effect is likely to

happen to the company.

While the first contribution is of great practical value,

the second outgrowth of this research has been the development of -

two new dual-incremental codes. While these codes are not

numerically superior to primal methods, they do extend the theory of

parametric analysis to solve generalized network flow problems.

Before this research, parametric analysis as related to operator

theory was used only to solve the generalized transportation problem :1
(5,6,7,8).

7.3 Recommendations for Further Research

There are three areas which could lead to further research.

The first logical extention would be to develop parametric

programming codes for changes in arc costs or gain parameters. This

would allow the operations research analyst to vary all the

parameters of the network to do a complete analysis of the proposed

195

model.

The second area would be to continue further testing to make

PARARC and PARANDE computationally more efficient. In (67) Schmitt

developed a pure dual-incremental code which is relatively

competitive with known primal codes. This leads to speculation that

dual-incremental codes for generalized networks might also be

competitive if they were modified appropriately. The principle time

consumer for a dual method is the search for the arc to enter the

basis. This usually requires a search in each iteration proportional

to the number of arcs. In a private communication (58) Matsumoto

suggests that one only need search through those admissible arcs

which originate or terminate in the N2 set. Another potential way-

to reduce computational time is to implement PARARC and PARANDE with

the augmented threaded index method. Glover, Klingman, and Stutz

report a 10% reduction in computation time using preorder traversal

lists for the basis representation rather than the triple label

method.

A third way to improve PARARC and PARANDE would be the way

the initial basis tree is found. While the basis initialization

only consumes 2-3% of the total optimization time, it is possible

that the algorithm THRESH presented by Glover, et al. (39) may be

able to reduce this even further. A fourth possible way to save

time is to eliminate the use of mirror arcs in a way similar to

196
I

Schmitt's work (67). The comparison to check if arc k is greater

than zero is done numerous times throughout the complete algorithm.

Without counting the number of times this logical check is done

after the computations with do loops are applied, the author has

roughly counted over 40 individual logical comparisons of k > 0. A

fifth possible way to lower the optimization time is to continue to

increment the flow on those arcs on the tree until all paths from

the source to the destinations are capacitated. Then by using a

modified PSHRTG a new basis tree could be found. This could

potentially cut down on the number of dual iterations, thus greatly

reducing computational time.

A final area of research interest would be to apply the

parametric methods to multicommodity flow problems. There has been

much recent interest in this area (16,34,35,51,60,65). It seems

possible that a two commodity flow problem in the form:

min HyF + HxF

S.T. AF - b
Y y

AF = b
x x

0 < F < GF
- x- y

F >0

could be solved by dividing this problem into a master problem and a

I-

197

subproblem. In the subproblem the concepts of parametric analysis

could be used to modify the right-hand sides and then pass the

required data back to the master problem.

I

APPENDIX 1

198

199

PURPOSE: To read HAINARC
data, initialize
the basis, and DATA
call parametric
arc incremental (READG1
algorithm to
generalized net-
work problem. INITIAL

1MHRTC(SN,TN,NP)l. (DATA) Read

problem data from NP -1 N
input source.

2.(INITIAL) Use
DSHRTG to find the (PSHRTG(UNFJ)
shortest path from r .
slack node to UNI-1 N
super-sink node.
If no path exists STOP STOP >ALGORITHM
(NP ,1), stop.
Otherwise use
TREINT to con- ALGORITHM
struct pointer rep-
resentation of PARARC
tree. Call PSHRTG
to find shortest Y7ST I N
path for general-
ized net work. If 0 FEASIBLE SOLUTION
UNB ml, an unbound-
ed solution exists.
Otherwise go to 3.

3.(ALGORITHM) Call
pararc to solve
problem. If ST - 1
there is no feasi-
ble solution. GEN-
OUT prints solution
results.

Main Program MAINARC

200

PURPOSE: To accept (ORIGSGI(I,J,LOWER,UPPER, COSTGAIN)arc data item and|

store it in an arc INITIAL
list ordered by as-
cending origin NPLUS1:-N+l
node.

I'.(INITIAL) If
first call to FOR II:- I TO NPLUSI.
OXIGSGI, set all /I
node pointers to I. IPO(II):-l
Otherwise go to 2.

2.(KOVE) Increase MOVE
M by one. Increase
all node pointers K:,m1+1
greater than I by
one. Move all arcs FOR II:-Il+ TO NPLUS1
above the nov en- 1
try one index high- PO(II):-PO(II)+l
or on list.

. ePO(I+l)<M _
3.(ARC) Insert arc

L [

in last position FOR L:ml TO H-PO(I+l)+l
alloted to node 1. /
Modify the upper //K:H-L,O(K+):O(K),T(K+):-T(K)
bounds of the arcs //CL(K+I):-CL(K),C(K+I):-C(K),
and fixed external //H(K+1):,H(K),P(K+l):=P(K)
flows to account L.
for the arc lover
bound. ARC

K:-PO(I+l)-l,O(K):-I,T(K):-J,CL(K):-LOWER,
C(K):-UPPER-LOWER,R(K) :-COST, B(1) :-=(I)-LOWER
3(J): =B(J)-LOWE, A(K): -GAIN

ill\ F -0

P(K):- 0 P(K):--BIp

TURN L

Subroutine ORIGSGl

201

PURPOSE: To read RE.ADG-
and store node and INITIAL
arc data for the I

minimum cost flow READ,NH:-O,SLACK:-N+2,XS:N+I,X4:-O,XX:-O
problem.

FOR 1:-I TO N
1.(INITIAL) mnit- //
ialize the number / I(I):-O
of arcs to zero.
Create super-slack
node and super- NODE
sink node (xs).
Set all external READ I,BF,BS,CS
flows to zero.

2.(NODE) Read a
node data item.If B,>0
fixed external flow
is positive,put B(I):-BF XX:-XX+BF,J:-XS,LOWER:-O,
fixed flow in stor- UPPER:-O,COST:-BIG+1,GAIN:-l
age.Otherwise, add
up the cumulative (0RIG5Cl(I,J,LOWER,UPER,
amount of demands ' COSTAIN)
and create arc from
demand node to xs. BS - 0 IN
If slack external
flow is zero go to DS > 0
2. Othervise create

a slack arc and J:-I,I:-SLACK, J:-SIACKLOWER:-O
store data in cor- LOWER:=O,UPPER:-BS UPPER:m-ES,
rect position in arc COST:-CS,GAIN:=I COT:-CS,GAIN:=l
lists. After all
node data has been ORI Cl(1,J, LOWR, UPPERCOST, CAIN-)
read (1-0). Set sup-
er-sink external -- >NODE
flow to cumulative -

demands. Go to 3. B(XS):-XX,Bf:-O

3.(ARC) Read an arc --->ARC
data item. If 1-0,

S ui

II

202

go tostep 4as all ARC
arc data has been
read. Else store AD 1,J,LOWER,UPPER,COST,GAIN
the are data in
the correct posi- I-07
tion in the arc
lists. Repeat > ORIGSC I (I J, LOWER, UPPER, COST. CAUN
step 3. I_

4. (ARTIFICIAL) IL ->R

Create an artifi-
cial arc from the ARTIFICIAL
super sink to each
supply node.Place FOR IG:-l,N-l
arc in correct/
position in arc B(G)<

* lists. Create can- /
didate arc(XK) and I I:mSLACK,J:-IG InGJ-IC
number of arcs in /LOWER:-O.COST:-IIG LOWER: -OCOST: wBIG
list(XI). Set the IIUPPER:--I(IG),GAIN:-l UPPER:-B(IG),GAIN:-l
counter for the/
sink node (TN) and C/ ORIGSG (I; J, LOWER, UPPER, COST, GAIN4jslack node(SN).Go FO- :lTto 5 O :iT

5.(EXT) Place each 1/PMI - 0

arc's data in the
/\

correct position in //I I : X1+,XK(1: -1
the terminal list. ISN-SICKT--

M: -LK,: -O

FOR K:-l TO LM

Subroutine READGl(cont)

J

203

PURPOSE: To im- C)

plement the para-
metric arc flow RESET

augmentation ap-
proach for a gener- (TERM(XS,L)
alized network.

FOR I:-1 TO L
1.(RESET) Set the /
costs on all arcs / J:-LISA(I)
terminating at the /I

super-sink node to / 5(J) 7BIG44
zero, except the / J):(:
artificial arc.

2.(INITIAL) Init- INITIAL
ialize all para-

meters to zero. FOR 1:-l TO N

r ~3.(OPTIMAL) If the / ()

flow on the
artifi-

cial arc equals 0, :-O,ST:-0,ITER: 0,ITERD:-0
return with opti-
mal solution.

Otherwise go to 4. OPTIMAL

4.(CHECKIN) Init- F(M) > 0

ialize the T's to Y\ F)

zero Initialize >CUCKIN RETURN
arc,node, and cycle

counters to zero.
CHECKIN

5.(LEAVE) For each

arc on the candi- FOR 1:-l TO N
date arc list, de- /
termine if the arc / G(I):-O,IK(I):-O
is nonbasic. If it
is and its para- XC:-0,CK:-O,Z:O,M:-99999,NK:=O
metric parameter is

less than zero, ->LEAVE
calculate a refer-

Subroutine PARARC

204

ence number. Store LEAVE
the smallest refer-
ence number ME. If FOR I:-1 TO XM
the parameter is //
negative, is set IE XKK:XK(I),ZI:,O(XKK),ZJ:-T(XKK)
to the terminal /
node of XX, other- /P PI(ZJ) - XKK OR PB(ZI) - -K IN
wise IE is the //.KK < I
origin node of X II
Call PATH which II
creates LISA,LISN II Ml:-F(XKK)/-PARA(I) XKE:-XKK
and RC lists for I PX:--PARA(I) PX:-PARA(I)
all flow augment- XKE:--XKK IE:-O(XKK)
ing trails. If a /I IE:-T(XKK) JE:-T(XKK)
cycle has been // JE:-O(XKK)
found in PATH, call //
CYCLEG to update 7 II MlME N
values for all I/ ME:-M,NK:=XKK
nodes on the cycle. I
Call 1FLOG2 to de- IJ:-IE,TH:-l,MF:-tE,ITER:-ITER+l
teruine the maxi- //
mum reference num- // (PATH IJ TKXKE XKK,PXIK CK
ber and arc which //
reaches capacity. // IJ:-JE,TM:--l
If KL - 0 any fur- /
ther iterations I/ PATH(IJ TH XKE,XKK,PXIKCK)
will drive a cap-
city below zero. If Z 0 IN
the reference num-
ber is zero, this CYCLEG
is a degenerate
iteration. Other-
vise update flows
on basic arcs and
flows and capaci- KL - 0
ties on candidate
arcs. MF-0 Z,

ITERD:- CFWG2
ITERD+l

TURN --->ENTER

Subroutine PARARC(cont)

205

6.(ENTER) Call ENTER
FINDARC (same as
FIND2G except it
has been modi-
flied for FOR- ST - 1
TRAN coding) which
will determine KE. ETURN --->CHANGE
If KE - 0 there is
no feasible solu-
tion to the prob- CHANGE
lem and return.
Otherwise go to 7. (PIVOTIG(KLKE)

7.(CHANGE) Change ->OPTIMAL
the basis and up-
date dual vari-
ables. Go to 3.

Subroutine PARARC(cont)

206

PURPOSE: To change
f low on each basic INITIAL
arc by MP and to
update candidate I
arc flows and
capacities. FOR L:-I TO IC

II F(IC)4*F*G(J)/ F(-K)-KF*G(J)

-- >PARK A(K)

-PARAMETRIC

FOR JJJ:-l TO X14

F R:XK(J), C(K) :-C(K)4MIP*PARA(JJJ),

Subroutine FLOWG2

APPENDIX 2

207

208

PURPOSE: To read MAiNND'
data, initialize
the basis, and DATA
call parametric
node incrementalRM D
algorithm to
generalized net-
work problem. INITIAL

nSHRTG(SN.TN,NP)
1.(DATA) Read
problem data from yNP N
input source.

2.(INITIAL) Use
DSHRTG to find the PSHRTG (UNBJ
shortest path from
slack node to all UND -1 N
destinations.
If no path exists TOP STOP ->ALGORITHM
(NP -1l), stop.-
Othervise use
TREINT to con- ALGORITHM ,
struct pointer rep-
resentation of PARAL1DE
tree. Call PSHRTG
to find shortest ST - I
path for general-
ized net work. If 40 FEASIBLE SOLUTION
UXB -1 an unbound-
ed solution exists. (..OgNOUT.
Otherwise go to 3.

3.(ALGORITHM) Call
parande to solve
problem. If ST - I
there is no feasi-
ble solution. GEN-
OUT prints solution
results.

Main Program MAINNDE

209

PURPOSE: To read READNDE
and store node and INITIAL
arc data for the
minimum cost flow ,N,M:=O,SLACK:-N+I,X4:-O,TOTAL:-O -
problem.

FOR 1:=l TO N

1.(INITIAL) Init-
ialize the number I):=0
of area to zero,
total demand to
zero,and number of NODE
parmetric nodes to
zero. Set SLACK - AD I,BF,BS,CS
nodes + 1.

1=0
2.(NODE) Read a - -
node data item.If y B,>O
the item is blank
go to 3. If the B(I):-BF XN:nXM+;I,XK(XK):=I
fixed external flow PARA(X) :--BF, TOTAL: -TOTAL-BF
is positive put it
in storage • Other- BS = 0
vise set up para-
metric node list and BS > 0
keep track of total
demand.If slack ex- J:-I,I:-SLACK, J:-SLACK,LOWER:-
ternal flow is zero LOWER:-O,UPPER:-BS UPPER:--BS,
go to 2. Otherwise COST:-CS,GAIN:-l COST:-CS,GAIN:-l
create slack arc and
store data in the CORIGSGI(IJ,LOWERUPPERCOST GAIN)
correct position in I
the arc list. -- >NODE

3.(ARC) Read arc ->ARC
data item. If item

Subroutine READNDE

210

is blank go to 4. ARC
Else store the arc
in are list. AD IJ,LOWER,UPPER,COST,GAIN

4.(EXT) Place each I -0
arc's data in the
correct position ORIGSG1(I,J,LOWER,UPPER,COST,GAIN
on the arc term- 14:-SLACK
inal list.M- [->R

FOR K:-l TO 1.4

Subroutine READlIDE(cont)

%

211

PURPOSE: To in-PA
plement the para-
metric node flow INITIAL
augmentat ion ap-

proach for a gener- FOR 1:-l TO Nalized network. //RI : 0

1.(INITIAL) Init-
ialize all para- .-0,ST:-OITER:-O,ITZR:-O
meters to zero.

2.(OPTIMAL) If the OPTIMAL
difference between
the cumulative re- 1.0-CUMRNO 0
ference number and
I is zero, stop TURN -- ZERO
with the optimal
solution. Other-
wise go to 3. ZERO

3.(ZERO) Set the FOR I:-I,N
7's to zero. Init- /
ialize arc,node, /IG(I) : OIK(I):-O
and cycle counters
to zero. IC:-O,CK:-O,Z:-O,!E:-99999,N :-O

4.(LEAVE) For each
node in the candi-
node list deter-
mine if its para- LEAVE
metric parameter
is less than zero. // FOR 1:-l TO XN
If so calculate a //
reference number. I/ XKK:XK(I)
Store the smallest I/
as M. Set IJ to /I PARA(I) < 0
the node number I
and TN to 1 or -1 // Nl:-F(XKK)/-PARA(I) XIU:uXKK
as appropriate. // PX:--PARA(I) PX:-pARA(I)
Call PATH which // X11:--I IJ:oaKR
will create LISA !/ IJ:-XKK T:-I.0
LISI, and IC lists Ml fl:--1.O
for all flow u- II
menting trails. I/. N1<E N
If a cycle(s) has fl ME:-M1,NK:- XKU
been found in PATH II

Subroutine PARANDE

212

to update 'Y's for /1 PATH IJ Th XKE XXX PXIX C-K
nodes on the cy-
cle(s). Call Z = 0
MFLOG to determine N-
the reference num- CYCLEG
bet and the arc
which reaches cap- :-t4E,ITER:mITER+l
acity. If MF+
CUHINO > 1 reset 2 OG
MF and update flows
and return. If not HF +CUIRNO > 1.0 N
check if a node
will be infeasible F - I-CU?1RNO L a 0N
at next iteration.
If so update flows CanJ) C ' t MiF- 0 IN
and return. Other-
vise update flows. ITERD:- CUHNRO:a

ITERD+1 CW.NO+
4(ENTER) Call FIND- MF
NDE which viii de-
termine the enter-
ing arc. If no arc
can be found, there RETURN RETURN ->ENTER
is no feasible sol-
ution. Return.
Otherwise go to ENTER
5.

5.(Change) Call
PIVOTIG to change ST I ,," '

basis and up date
dual variables. ETURN -- >CHANGE

CHANCE

PIVTIGVO L T

Subroutine PARANDE(cont)

BIBLIOGRAPHY

1. Adolphson, D.L. Private Communication to Michael E. Baum,
(January 1984).

2. Adolphson, D.L. "Design and Implementation of a Generalized
Network Computer Code," presented at ORSA/TIMS meeting,
(November 1980).

3. Ahuja, R.L, et. al. "Parametric Network Feasible Problem,"
CCERO, Vol. 25 (1983), 13-21.

4. Ali, A., et. al. "Primal Simplex Network Codes: State of the L
Art Implementation Technology," Networks, Vol. 8 (1978),
315-339.

5. Balachandran, V. and Thompson, G.L. "An Operator Theory of
Parametric Programming for the Generalized Transportation
Problem: I - Basic Theory," Naval Research Logistics Quarterly,
Vol. 22 (1975), 79-100.

6. Balachandran, V. and Thompson, G.L. "An Operator Theory of
Parametric Programming for the Generalized Transportation
Problem: II - Rim, Cost, and Bound Operators," Naval Research
Logistics Quarterly, Vol. 22 (1975), 101-125.

7. Balachandran, V. and Thompson, G.L. "An Operator Theory of
Parametric Programming for the Generalized Transportation
Problem: III - Weight Operators," Naval Research Logistics
Quarterly, Vol. 22 (1975), 297-315.

8. Balachandran, V. and Thompson, G.L. "An Operator Theory of
Parametric Programming for the Generalized Transportation
Problem: IV - Global Operators," Naval Research Logistics L-

Quarterly, Vol. 22 (1975), 317-339.

213

i%

214

9. Balachandran, V., Srinivasan, V. and Thompson, G.L."Applications ofthe Operator Theory of Parametric Programming.

for the Transportation and Generalized Transportation
Problems," Mathematical Programming Study, No. 15, 58-85.
Amsterdam, Holland: North Holland Publishing Company, 1981.

10. Balachandran V. "Generalized Transportation Networks with
Stochastic Demands: An Operator Theoretical Approach,"
Networks, Vol. 9 (1979), 169-184.

11. Balas, E. and Ivanescu, P.L. "On the Generalized
Transportation Problem," Management Science, Vol. 11 (1964),
188-202.

12. Balas, E. "The Dual Method for the Generalized Transportation
Problem," Management Science, Vol. 12 (1966), 555-568.

13. Bazarra, H.S. and Jarvis, J.J. Linear Programming and Network
Flows, New York: John Wiley and Sons, 1977.

14. Bradley, G.H. "Survey of Deterministic Networks," AIIE
Transactions, Vol. 7, No. 3 (September 1975), 222-234.

15. Bradley, G.H., et. al. Applied Mathematical Programing,
Massachussetts: Addison-Wesley Publishing Company, 1977.

16. Bixby, R.E. and Cunningham, W.H. "Converting Linear
Programing to Network Problems," Mathematics of Operations
Research, Vol. 5, No. 3 (August 1980), 321-357.

17. Charnes, A. and Cooper, W.W. Management Models and Industrial
Applications of Linear Programming, New York: John Wiley and
Sons, Inc., 1961.

18. Charnes, A., Cooper, W.W. and Mellon, B. "Blending Aviation
Gasolines: A Study in Programming Interdependent Activities in
an Integrated Oil Company," Economatricia, Vol. 20, No. 2
(1952)..

215

19. Charnes, A., Cooper, W.W. and Henderson, A. An Introduction to

Linear Programming, New York: John Wiley and Sons, Inc., 1953.

20. Cunningham, W.H. "A Class of Linear Programs Convertible to
Network Problems," Operations Research, Vol. 31, No. 2 (March -

April 1983), 387-391.

21. Dantzig, G.B. Linear Programming and Extensions, New Jersey:

Princeton University Press, 1963.

22. Dantzig, G.B. and Van Slyke, R.M. "Generalized Upper Bounding
Techniques," Journal Computer System Science, Vol. 1 (1967),
213-226.

23. Dial, R., Glover, F., Karney, D. and Klingman, D. "A
Computational Analysis of Alternative Algorithms and Labeling
Techniques for Finding the Shortest Path Tree," Networks, Vol.
9 (1979), 215-248.

24. Elsemann, K. "The Generalized Stepping Stone Method for the
Machine Loading Model," Management Science, Vol. 11 (1964),
154-176.

25. Elam, J., et. al. "A Strongly Convergent Primal Simplex
Algorithm for Generalized Networks," Mathematics of Operations
Research, Vol. 4, No. 1 (February 1979), 39-59.

26. Ford, L.K. and Fulkerson, D.K. Flows in Networks, New Jersey:
Princeton University Press, 1962.

27. Forrest, J.J.H. and Tomlin, J.A. "Updated Triangular Factors
of the Basis to Maintain Sparsity in the Product Form Simplex
Method," Mathematical Programming, Vol. 2, 263-278. Amsterdam:
North Holland Publishing Company, 1972.

r,

216

28. Fourier, J.B.J. "Solution d'une Question Particular du Clacul
des Inequalities Oeuvers II," (1826), 317-328.

29. Gal, T. Postoptimal Analysis, Parametic Programming, and
Related Topics, London: McGraw Hill, Inc., 1979.

30. Gass, S.I. and Saaty, T.L. "The Computational Algorithm for
the Parametric Objective Function," Naval Research Logistics
Quarterly, Vol. 2 (1955), 38-45.

31. Gass, S.I. and Saaty, T.L. "Parametric Objective Function 2,"
Operations Research, Vol. 3 (1955), 395-401.

32. Gibby, D., et. al. "A Comparison of Pivot Selection Rules for

Primsl Simplex Based Network Codes," Operation Research
Letters, Vol. 2, No. 5 (December 1983).

33. Golden, B.L. and Magnant-i, T.L. "Deterministic Network
Optimization: A Bibliography," Networks, Vol. 7 (1977),
149-183.

34. Glover, F, et. al. "Solving Singly Constrained Transhipment
Problems," Transportation Science, Vol. 12, No. 4 (November
1978), 277-297.

35. Glover, F. and Klingman, D. "The Simplex Son Algorithm for
LP/Embedded Network Problems," Mathematical Programming Study
No. 15, 148-176. Amsterdam: North Holland Publishing Company,
1981.

36. Glover, F. and Klingman, D. "A Note on Computational

Simplications in Solving Generalized Transportation Problems,"
Transportation Science, Vol. 7 (1973), 351-361.

37. Glover, F., Klingman, D. and Stutz, J. "Extensions of the
Augmented Predecessor Index Method to Generalized Network
Problems," Transportation Science, Vol 7. (1973), 377-384.

--

Ii

217

38. Glover, F., Hultz, J., Klingman, D. and Stutz, J. "Generalized
Networks: A Fuudamental Computer Based Planning Tool,"
Management Science, Vol. 24, No. 12 (August 1978).

39. Glover, F., et. al. "Computational Study of an Improved
Shortest Path Algorithm," Networks, Vol. 14, No. 1 (1984).

40. Hadley, G. Linear Programming, Massachusetts: Addison-Wesley

Publishing Company, Inc., 1962.

41. Hellerman, E. and Rarick, D. "Reinversion with the Preassigned
Pivot Procedure," Mathematical Programming, Vol. 1, 195-216.
Amsterdam: North Holland Publishing Company, 1971.

42. Hu, T.C. Integer Programming and Network Flows, Massachusetts:
Addison-Wesley Publishing Company, Inc., 1970.

43. Hultz, J. and Klingman, D. "An Advanced Dual Basic Feasible
Solution for a Class of Capacitated Generalized Networks,"
Operations Research, Vol. 24, No. 2 (March-April 1976).

44. Jensen, P.A. and Bhaumik, G. "A Flow Augmentation Approach to -

the Network with Gains Minimal Cost Flow Problem," Management
Science, Vol. 23 (1977), 631-643.

45. Jensen, P.A., et. al. "Network Flow Optimization for water
Resources Planning with Uncertainties in Supply and Demand,"
Technical Report CRWR-172, University of Texas (July 1980).

46. Jensen, P.A. and Barnes, J.W. Network Flow Programming, New
York: John Wiley and Sons, Inc., 1980.

47. Jewell, W.S. "Optimal Flow through a Network with Gains,"
Operations Research, Vol. 10 (1962).

218

48. Johnson, E.L. "Networks and Basic Solutions," Operations
Research, Vol. 14 (1966), 619-623.

49. Kantorovich, L.V. "On the Translocational Masses," Conpt.
Rendu Acad. Sci., USSR, Vol. 37 (1942), 199-201.

50. Kantorovich, L.V. "The Application of Mathematical Methods to
Problems of Freight Flow Analysis," Akademia Nauk, USSR, 1949. -

51. Kennington, J.L. "A Survey of Linear Cost Multicommodity
Network Flows," Operations Research, Vol. 26, No. 2
(March-April 1978), 209-236.

I.
52. Klingman, D. and Russell, R. "Solving Constrained

Transportation Problems," Operations Research, Vol. 23, No. 1
(January-February 1975), 91-106.

53. Klingman, D., Napier, A. and Stutz, J.D. "NETGEN - a Program
for Generating Large Scale (Un)capacited Assignment,
Transportation, and Minimum Cost Flow Network Problems,"
Management Science, Vol. 20 (1974), 814-822.

54. Koopmans, T.C. Activity Analysis of Production and Allocation, L
Cowle Commission Monograph Number B, New York: John Wiley and
Sons, Inc., 1951.

55. Lasdon, Leon S. Optimization Theory For Large Systems, New
York: MacMillian Company, 1970. L-

56. Lemke, C.E "The Dual Method of Solving the Linear Programming
Problem," Naval Research Logistics Quarterly, Vol. 1 (1954),
36-47.

L

57. Lourie, J.R. "Topology and Computation of the Generalized
Transportation Problem,"*Management Science, Vol. 11 (1964),
177-187.

219

58. Matsumoto, J. Private Communication to P. A. Jensen, (June
1983).

59. Maurras, J.F. "Optimization of the Flow Through Networks with
Gains," Mathematical Programming, Vol. 3 (1972), 135-144.

60. McBride, R.D. and Gupta, A. "Solving Embedded Generalized
Network Problems," Paper presented at Fall ORSA/TIMS San Diego
Meeting, (October 1982).

61. Minieka, E. "Optimal Flow in a Network with Gains," INFOR,
Vol. 10 (1972).

62. Murtagh, B.A. Advanced Linear Programming, New York:
McGraw-Hill, Inc., 1981.

63. Neyman, J. and Pearson, E.S. "Contributions to the Theory of
Testing Statistical Hypothesis," Statist, Res. Mem., Parts I
and I, (1936 and 1938).

64. Orchard-Hay, W. "A Composite Simplex Algorithm - II," The Rand
Corporaton Research Memorandum RM-1275, (May 1954).

65. Ramakrishnan, K.G. "Solving Two-Commodity Transportation
Problems with Coupling Constraints," Journal of the Association
for Computing Machinery, Vol. 27, No. 4 (October 1980),
736-757.

66. Saaty, T.L. and Gass, S.I. "The Parametric Objective Function
1," Operations Research, Vol. 2 (1954), 316-319.

67. Schmidt, S.R., Jensen, P.A. and Barnes, J.W. "An Advanced Dual
Incremental Network Algorithm," Networks, Vol. 12 (1982),

475-492.

220

68. Schrage, L. "Implicit Representation of Variable Upper Bounds
in Linear Programming," Mathematical Programming Study No. 4,
118-132. Amsterdam: North Holland Publishing Company, 1975.

69. Schrage, L. "Implicit Representation of Generalized Variable
Upper Bounds in Linear Programming," Mathematical Programming,
Vol. 14, No. 1 (1978), 11-20.

70. Shapiro, J.F. "A Note on the Primal-Dual and Out-of-Kilter
Algorithms for Network Optimization Problems," Networks, Vol. 7
(1977), 81-88.

71. Shapiro, J. Mathematical Programming: Structures and
Algorithms, New York: John Wiley and Sons, Inc., 1979.

72. Srinivasan, V. and Thompson, G.L. "An Operator Theory of
Parametric Programming for the Transportation Problem - I,"
Naval Research Logistics Quarterly, Vol. 19 (1972), 205-225.

73. Srinivasan, V. and Thompson, G.L. "An Operator Theory of
Parametric Programming for the Transportation Problem - II,"
Naval Research Logistics Quarterly, Vol. 19 (1972), 227-252.

74. Srinivasan, V. and Thompson, G.L. "Cost Operator Algorithms
for the Transportation Problem," Mathematical Programming, Vol.
12 (1977), 372-391.

75. Todd, M.J. "An Implementation of the Simplex Method for Linear
Programming Problems with Variable Upper Bounds," Mathematical
Programming, Vol. 23, No. 1 (1982), 34-49.

76. Tomlin, J.A. "A Parametric Bounding Method for Finding a
Minimum L. -Norm Solution to a System of Equations," Technical
Report Sol. 75-12, Systems Optimization Laboratory, Stanford
University, May 1975.

221

77. Tomlin, J.A. Private Communication to Michael Baum, (December
1983).

78. Von Neuman, J. and Morgenstein, 0. Theory of Games and
Economic Balance, Princeton, New Jersey: Princeton University
Press, 1944.

7

VITA

Michael Ernest Baum was born on 20 February, 1951 in Poughkeepsie,

New York, the son of Rolf and Tony H. Baum. Hie graduated

salutatorian from Hillsboro-Deering Cooperative High School,

Hillsboro, New Hampshire in 1969 and subsequently attended the

University of New Hampshire at Durham. In 1973, he graduate Magna

Cum Laude with a Bachelor of Science in Mathematics and was

commissioned a Second Lieutenant in the United States Air Force. He-

then attended Case Western Reserve University in Cleveland, Ohio

where he received his Master of Science in Operations Research in

1975. Capt Baum entered active duty in May 1975, received his pilot-

aeronautical rating in 197/6 at Reese AFB, Lubbock, Texas, and was

then assigned to the 6901, Bombardment Squadron at Loring AFB, Maine

where he piloted a B-52G heavy strategic bomber. In 1981 he was

assigned to The University of Texas at Austin to complete his

doctoral degree in Operations Research through the department of

Mechanical Engineering. Capt Baum is a member of Phi Beta Kappa, Phi

Kappa Phi, and the Operations Research Society of America. In 1983

he married Sigrid Levi.

Permanent Address 1231 Sorrento Road

Florence, Alabama 35360

This dissertation was typed by The Baum Corporation.

4 4e

14

.47

II

Ar

77.f

4 44

4o4

to 41, (,I

41

